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Abstract

The paper presents a one-factor affine model of the term structure of Libor rates
with autocorrelated measurement errors. It can be viewed as a centra tendency
model, with the theoretical arbitrage-free rates serving as stochastic means to
which the observed rates revert. Two estimation techniques are compared, one
based on a no-measurement-error assumption, the other on Kalman filtering. The
estimates are then used in standard yield spread regressions with a view to
accounting for the departure of future short rates from what the expectations
hypothesis would predict.
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1. I ntroduction

Understanding the dynamics of Libor isimportant for the management of risk. Managers rely heavily
on over-the-counter markets and organised exchanges to hedge or take positions in derivative contracts
whose reference rates are linked to Libor, and this requires a consistent theory of how the market forms

expectations of Eurodeposit rates.

From a monetary policy perspective, considering Libor rates instead of those derived from domestic
government securities can also provide valuable insights into the market’s expectations of future short
rates. The Libor curve may be regarded as an approximation to the true cost of funds for prime
banks participating in the London market. There are no reserve requirements or deposit insurance
premiums imposed on Eurocurrency deposits, no withholding taxes levied on interests paid to non-
resident depositors and, in terms of capital adequacy, no specific capital requirementsfor foreign banks.*
An additional feature of the Libor market isthat it provides quotes every day for awide range of short-
run maturities. By contrast, it is less easy to define the near end of the term structure with government
securities. Short-term instruments used to complement bonds with ahorizon of lessthan one year are not
available for every maturity, and the determination of their ratesis often affected by specific institutional
features. Finaly, the short-term nature of the market, together with its concentration in highly rated
banks subject to strict credit monitoring, implies that the credit premium included in Libor fixings is
probably small. Thisis not to say that the credit standing of any prime institution cannot deteriorate
rapidly and eventually be reflected in higher rates. The British Banker's Association, however, polls a
sample of top-rated banks, trims the highest and lowest rates, rounds the remaining yields and finally
averages them. As aresult, the influence of idiosyncratic credit risk in official quotes is likely to be

significantly dampened.

This paper estimates an interbank term structure from a panel of weekly dollar Libor fixings for six
maturities, ranging from one to 12 months. There are two key features. First, the estimation is based
on an equilibrium model of the term structure. Market participants and central banks tend to “read” the
term structure as if it revealed the market’s expectations of future short-term rates. Forward spreads,
however, are driven by changes in the price of risk as well as changes in expectations about interest
rates. Rather than treating excess returns on long bonds as residuals, the equilibrium approach seeks to

elicit term premia endogenously from the absence of arbitrage. Second, it is assumed that expectations

L Europlacements enjoy the same favored risk rating (20%) as the paper issued by federal agencies and supranational

institutions, but the situation might change in the wake of the draft proposals for the Basel apital Accord.



about future rates can be captured by a single factor. The justification for this choice is to limit
the number of parameters needed to reproduce the Libor curve and avoid computationally intensive
formulations. Instead of increasing the number of factors to describe the entire yield curve, the paper
keeps a single latent variable to fit a smaller part of the yield curve. To some extent, it tries to find
a middle ground between the complicated dynamic general equilibrium models of the term structure
developed in the financia literature and the simpler static curve-fitting techniques that many (central)

banks use to approximate implied forward rates or their distributions from observed financia prices.

The continuous-time, square root model of Cox et al. (1985) has a few remarkable properties. First,
it is tractable, and thus has the potential to be more widely used in central banks as an indicator of
interest rate risk. The factor summarises the current shape of the yield curve and the way it is expected
to fluctuate over time. Second, it alows for a variable term premium, and thus provides a theoretical
decomposition of forward rates into expectations and risk premiums directly. One subject of obvious
interest in this respect is its bearing on the rejection of the expectations hypothesis. Since the largest
discrepancies arise for postwar US data at maturities under two years, it is particularly interesting to
address this issue with Eurodollar data. Finally, the continuous-time formulation avoids the restrictive
assumption of log-normal interest rate innovations at discrete time intervals, which is at odds with the
evidence of a substantial excess kurtosis. In particular, it allows more flexibility in that it can easily

generate a hump-shaped curve for the impact of shocks on the term structure.

The econometric estimation of the model is carried out using two alternative techniques. Following
Chen and Scott (1993) and many others, the first one is based on the true conditional density of the
underlying factor, but assumes that there is no measurement error on the six-month Libor. Because the
non-central chi-square density of the factor involves a modified Bessel function, we call it the “Bessal”
method. The second uses a Kalman filter to let the data determine the measurement errors, but does not
use the true conditional density of the underlying factor. We call this the “Kalman” method. In either
case the measurement errors are assumed to follow simple autoregressive processes, with innovations
that are independent of the factors, normally distributed and possibly cross-correlated. One motivation
for this assumption is that the cross-section averaging and rounding-off of Libor quotes induce serial
correlation in the data. More plausibly, it deals with the risk of misspecification in the model, which can
have alasting effect on measurement errors. Although we will continue to refer to them as measurement

errors, they can aso be interpreted as specification errors.

Our results are as follows. First, we find that the one-factor model yields plausible parameter estimates
with areasonably small measurement error. Interestingly, it can be viewed as a central tendency model,

with the theoretical arbitrage-free rates serving as stochastic means to which the observed rates revert.



The bottom line is that the factor is much more persistent than the error term, and this is sufficient to
explain the main features of the interest rate data. The model has in fact two incarnations, depending
on the econometric method used to estimate it. Both reproduce the various unconditional moments
but the Bessel variant is better at capturing the time-varying shapes of the yield curve and the term
structure of volatility. Second, we show how both econometric methods induce systematic biases, which
lead to Bessel overpredicting and Kaman underpredicting future changes in rates. To this extent, the
specification biases appear to arise less from the model than from the method used to estimateit. Finaly,
we show on the basis of standard yield spread regressions that the one-factor model accounts well for
the departure of future short rates from what the expectations hypothesis would predict at the one-year
maturity, although significant tensions remain between the model and the data at the three-month and

six-month maturities.

Recent option pricing literature has placed greater emphasis on interbank interest rates. Jegadeesh
and Pennacchi (1996) estimate a two-factor model with central tendency calibrated on the three-month
Eurodollar futures contracts traded on the Chicago Mercantile Exchange. They show that more than one
factor isrequired to fit theinterest rate dynamics, but their evidenceis based on the Vasicek model, which
cannot account for time-varying term premia. Moreno and Pefia (1996) explore a single-factor model
with jumps for the Spanish overnight interest rate. They show that the existence of jumps can explain
the systematic underpricing of some interest rate derivatives, but they do not use panel data. Jamshidian
(1997) studies the existence of multifactor arbitrage-free models with a view to pricing Libor and swap
derivatives jointly. The no-arbitrage paradigm can be questioned if, as argued by Duffie and Singleton
(1997), Libor yields have distinctive features that are not shared by the longer end of the swap yield

curve, for example as aresult of heterogeneity in credit quality.

In monetary economics, interbank interest rates have also been studied for their informational or
predictive content. Gerlach and Smets (1997) use Euromarket data for 17 currencies and show that
rejection of the expectations hypothesis is for many countries less cogent than the empirical literature
based on US datawould suggest. Malz (1998) fits zero coupon curves on Eurodeposits, FRAs and swap
rates at different pointsin time using the popular Nel son-Siegel-Svensson methodology, and argues that
interbank rates are a valuable source of information on market expectations and the stance of monetary
policy. Konstantinov (1998) derives an equilibrium model of the interbank term structure by assuming
that the federal funds target rate is subject to discrete jumps and is able to replicate the predictability

pattern of interest rates for part of the sample.

To better identify the place of this paper in the literature of affine-yield models characterised by Duffie

and Kan (1996), it may be useful to discuss the relative merits of one-factor and multifactor models.



Much criticism has been levelled againgt the one-factor formulation. One main objection is that it
assumesthat all information is captured by a single expectation process. Fleming and Remolona (1999),
for example, show that different types of announcements lead to fundamentally different reactions of
the yield curve according to the way market expectations are revised. As an amalgam, a single factor
is also more difficult to interpret in terms of outside factors, such as money growth rates, inflation or
other factors connected to monetary policy. The empirical weaknesses of one-factor models have also
been clearly documented. The main problems concern the shape of the mean yield curve, the changing
patterns of autocorrelations and volatility with maturity, and the fact that interest rate innovations have
substantial excess kurtosis. In addition to these shortcomings, Backus et a. (1998) show that the one-
factor model is incapable of accounting for the departure from the expectations hypothesis and still
maintai ning an upward-sloping forward curve. Not surprisingly, all these difficulties have pointed toward
alarger number of factors, and it seems that nothing can stop authorsin their quest for more complicated
models.

At the same time, introducing more factors is no panacea. ldedly, one would like to increase
their number until the discrepancy between observed and modeled rates could be ascribed to a pure
measurement error. In practice, however, the error comes both from the underlying data and the model.
Statistical tests of the overidentifying restrictions, in the rare cases where they fail to reject, can reinforce
confidence in the model, but it is doubtful that any equilibrium model, however refined, will decisively
identify the deep structural parameters that underlie the absence of arbitrage, if there are any. The pitfall
is that by imposing a theoretical straitjacket on the data one may end up modelling the error term. Of
course, adding more factors resultsin a better fit of the yield curve at any point in time, but this does not

necessarily lead to an improvement in the reliability of the model’s predictions.

This paper is organised as follows. Section 2 summarises some results from the one-factor affine-yield
model and itsimplicationsfor the properties of rates. Section 3 outlinesthe statistical properties of Libor
and reports the results of our estimations according to the two econometric methods referred to above.
Section 4 provides a brief account of the specification biases generated by those methods. Section 5
presents estimates of standard yield spread regressions, involving ex post returns on rolling over a one-
month investment over different periods, and compares the results with the same regressions obtained

when the dependent variables are generated by the model. Section 6 concludes.

2. Some theory

In finance theory, the pricing kernel approach highlights the interaction between probabilities and risk.
The paper follows that approach by focusing on the one-factor continuous-time affine formulation.
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Writing the model in continuous time avoids the assumption of log-normal conditional distributions, but
requiresthat the implied density recorded at discreteintervals be evaluated exactly. Since the derivations
are now standard, this section briefly recalls the basic formulas and shows how they can be embedded in

an econometric model as the central tendencies to which the observable interest rates revert.

The principle of arbitrage by dynamic trading states that the current price B; v of a zero-coupon bond
maturing at time 7" is determined by M; B, r = E[Mr | F:], where M is the state price process (or
pricing kernel). The process M; is defined as

D M; = exp{—/t rs ds}nt

and captures both the effect of pure discounting, wh(:are r¢ 1S the instantaneous interest rate, and the
market’s valuation of risk, encapsulated in the risk-neutral density n,. One way to arrive at a tractable
specification of movementsin theyield curve isto characterise state pricesin terms of afew latent state
variables. The paper uses a single-factor representation obeying the square root process

@) dzy = k(0 — z;) dt + \/z¢ AW}

where W is a standard Brownian motion, x the mean reversion parameter and @ the steady-state mean.?
The z process models the arrival of information, possibly embodying expectational factors related to

monetary policy or other economic newsin some “reduced form” fashion.

With only one factor, it remains to determine how z impacts the price system M and the short-term
interest rate r. It seems reasonable to assume that, in a risk-averse world, positive shocks to the short-
term interest rate (higher ) should be associated with greater anxiety about future rates (higher state
price M), thus inducing a positive correlation between » and M. Suppose, for example, that shocks to

the risk-neutral density 7, are proportional to the factor’s innovations:

d
% = Az dW,
t
where A parameterises the price of risk. With lower-case letters standing for logarithms, 1to’'s formula

applied to (1) implies that state prices are ruled by the stochastic differential equation

—dmy =1y dt + (V\?/2)z dt + Mz AW,
This formulation makes clear that —\ governs the covariance between shocks to the price system
(viam;) and shocks to the interest rate (via z;). One would then expect A to be negative to induce a

positive correlation between r and M.

Given this setup, a simple Markovian structure obtains when the instantaneous interest rate depends on
the current state. As shown by Duffie and Kan (1996), the choicer(z) = a + 3z leadsto an affineterm

2 When 26 > 1, the process z; never reaches 0. This condition is always met for the parameter values estimated in the
sequel.



structure. A succinct derivation can be found in Appendix A. The parameter « controls for the lower
bound on the short rate, while 3, scalesits conditional volatility. Letting 7 = 7" — ¢ denote the current

maturity, the bond price B; ;- becomes the discount function

(3) Y(1,2) = exp{— (a1 + kOY(T) + B(1)2) }

for the functions 3(-) and v(-) givenin Appendix A. Wecall 5 (-) theimpact curve. The corresponding
spot rates are

4 r(1,2) = a+ KOy (1) T+ 26(T) /T

where 3 (1) /7, or factor loading, expresses the sensitivity of the interest rate to information arrival. The
one-factor affine model differs from the standard CIR formulation in that r; = (0, 2;) satisfies

dry =k (ry —re) dt + /By (r — a) dW;
wherer = r(6) = a+[,0. That is, « may be different from zero, and the entire yield curveis bounded

below by a. (A negative o would imply that rates can become negative with positive probability.)

The cross-sectional and time series behavior of yields under the one-factor model is entirely subsumed
in the five-dimensional parameter vector (k, A, 3y, 6, ). Thishas strong implications. First, all ratesare
linear functions of the same factor and, in the absence of measurement errors, are perfectly correlated. In
particular, they are stationary and revert to their respective long-term means at the same rate x. Second,
theyield curve tendsto alimit which isindependent of time as the maturity lengthens. Thisisillustrated
in Figure 1, which displays two sets of forward curves for different values of the state variable. Of
coursg, it is not possible to ascertain the long-term interest rate limit with Libor maturities ranging from
one to 12 months. Third, the same graph shows that the average yield curve can be upward-sloping or
hump-shaped. A high volatility parameter 3, relative to the mean reversion parameter « is sufficient to
generate a hump, and the curve steepness at the short end depends only on the market price of risk A
and on interest rate volatility, as measured by r; — a = 3y6. Finaly, the term structure of volatility
or variability of forward rates in the maturity dimension is time-varying, with a shape that is entirely
determined by the slope of the impact curve 3 (7). The voldtility curves in Figure 2 can move up
and down following changes in the factor, but their shapes are not allowed to change. The curve is
downward-doping when x + A > 0, hump-shaped otherwise, and displays exponential decay at long
horizons, implying that medium-term rates can be more variable than short rates, but that their volatility

will eventually decline with maturity.

Casual empiricism would reject the one-factor formulation because of its implication that any pair of
rates would satisfy a deterministic constraint exactly. In addition, there must be only a modicum of truth
in the one-factor affine representation. For both reasons, statistical noise must be added to the model.

Let (7q,...,7,) bean n-tuple of selected maturities. A vector of measurement errors u; can be defined
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from
(5) R o= ez, ) Fuf, k=1, ...,n,

where 7(z,7x) = gk + B 2t
From (4), the coefficients are g, = o + kb7 (1x) /T and 3, = [ (7x) /Tk. The continuous-time
dynamic (2) gives rise to the difference equation
(6) 2zt =(1—=0)0+bz_1 +wy
where b = ¢~%/52 js the autocorrelation of the factor (aternatively, 1 — b is the weekly rate of mean
reversion). The innovation to the factor, w;, has a conditional distribution which is determined by the
transition function of the state variable z sampled every week. One can show that this conditional
distribution is a non-central chi-square with 2«6 — 1 degrees of freedom, the analytic form of which
is given in Appendix B. As aresult, the unconditional distribution of w; is non-normal® with variance
o2 = (1 — b%) 0/2x. Measurement errors are assumed to be AR(1) processes,
(7) uf = prui_y +efs Eee=Q
with innovations that are independent of the factors, normally distributed and possibly cross-correlated.
In general, z; isnot observable, and (5) can be viewed as the measurement equation of afiltering problem

with transition egquation (6) and error covariance structure (7).

With the general AR(1) formulation provided by (6) and (7), the signal extraction problem in (5) might
seem unidentified at first sight. Indeed, if the first component were itself a generic AR(1) process, it
would be difficult to disentangle the factor from the error term, and the factor loadings 3, would not
be identified. However r(z;, 7)) IS @ vector process whose mean, covariance and autocorrelation are
determined by an arbitrage model. Consider the following thought experiment. First, p-difference the
data suitably at all maturities until the error terms become serially uncorrelated. Thisdeterminesthe p,.s.
Second, use the covariance matrix of the observed rates to estimate the covariance of the innovation
error €. With six maturities, there remain six first-moment conditions to estimate the twelve coefficients
gk, 3, and the parameters b, @ and o2, in (6). But all these coefficients are determined by a model based

on the five-dimensional parameter (k, A, 3, 6, o). Hence, the modd is actually slightly overidentified.

Finaly, to draw thelink between (5-7) and a model where one factor reverts to atime-varying mean, we
select any maturity k£ and write (5) in first difference using (6) and (7) to obtain

®) Arf = (1=b) (i =) + 6= i) (rFeem) =) + € + B

where we have put 7%(z;) = r(7y, 2) and 7} = r(6) to smplify notation. In addition to the fixed

long-run mean 7, to which the interest rate r¥ reverts at rate 1 — b, we recover the standard central

3 Itisactualy agammadistribution (see Appendix B1).



tendency formulation where the time-varying rate r*(z;) plays the role of the target driving the future

path of the interest rate, with rate of mean reversion b — p,.. Conversely, the central tendency model
Ary = (1—=p)Op1—2¢ 1)+ &
NGy = (1—=0)(0" —0:_1) +m,
where the factor x; reverts to atime-varying factor 8, can be reinterpreted in terms of the econometric
model

T = 0+

u = pu1+€
withe; = ¢, —n, — (1 —0)(0* —0:_1). When b iscloseto one, the error term ¢’ ishardly distinguishable
from a pure error innovation, and it may be that the first factor is simply the central tendency itself up
to some AR(1) process. To this extent, an investigator requiring that all rates be linear functions of both
x and € may in fact be unduly imposing arbitrage constraints on the autocorrelated error term u,. By

contrast, in (5) al arbitrage constraints are captured in r*(z;), not in the error term.

The introduction states that the one-factor formulation can easily generate hump-shaped responses to
the arrival of new information. In the central tendency model, the hump comes from the interaction
between two factors. When surprise information is revealed to the central tendency, the first factor
starts adjusting towards its new target, but its movements are limited by the size of 1 — p. During the
adjustment period, the central tendency, which is itself mean-reverting, gradually declines toward its
steady-state value, lowering the first factor’sinitial deviation from target. The impact of the innovation
is therefore felt more sharply for intermediate maturities than for short and long ones. By contrast,
multifactor Vasicek (1977) models with homoskedastic volatility, such as in Longstaff and Schwartz
(1992) or Chen and Scott (1993), imply constant term premia and cannot generate a hump. However,
time-varying conditional variances can also accommodate a hump-shape in the one-factor model.* A
necessary and sufficient condition for the factor loading curve to be upward-sloping at inception is that
the price of risk associated with holding debt A be larger in absolute value than the mean reversion
parameter . Thisimpliesthat the initial rise in the term premium more than offsets the speed at which
the short rate is expected to return to an equilibrium. The relationship between risk and expectational

factorsis further examined in Section 5.1.

4 Thisis shown in Appendix A, where our model is taken as the limit of a sequence of heteroskedastic discrete-time
models.
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3. Econometric results

Our first approach follows Chen and Scott (1993). We assume that one of the rates — the often referenced
six-month Libor — is observed without error. This actually sidesteps the identification problem by
making z; an observable variable. The estimation then proceeds using maximum likelihood under the
conditional factor transition and the joint distribution of measurement errors. Because the true density
involves amodified Bessel function, it isreferred to in the sequel asthe “Bessel” estimation. The second
approach is based on the Kalman filter. This quasi-maximum likelihood procedure exploits the first two
moments of the conditional density of observed yields. We depart from the standard application of the
Kaman filter in taking the model’s arbitrage conditions as well as the serial correlation of measurement

errors into account. Details of the two estimations are given in Appendix B.

While each approach is relatively easy to implement, they both lead to inconsistent estimates. The
no-measurement-error assumption allows direct observation of the underlying factor, but the resulting
distribution of yields cannot be taken as a correct description of the data generating process. In
particular, the variance of the underlying factor is equated to that of the six-month Libor, even though
the latter should be larger in the presence of uncorrelated measurement errors. We thus predict that the
unconditional variance of the factor, /2, will be biased upwards. On the other hand, the Kalman filter
lets the data determine the measurement errors for al yields, but uses normality assumptions that are
not met by a non-Gaussian model. The estimated factor can still be interpreted as an optimal predictor
in the mean sgquared error sense, rather than in the conditional mean sense, but the parameter estimates
do not minimise the conditional density of the data generating process. These biases are examined in
Section 4.

31 Data and summary statistics

We obtain end-of-week Libor official fixing data from Reuters as reported in the DRI database for 24
October 1986 to 20 February 1998 for maturities ranging from one to 12 months (592 observations).
The selected maturities are one, two, three, six, nine and 12 months. Each bank in the panel is asked
to contribute the rate at which it could borrow funds, were it to do so by asking for and then accepting
interbank offers in reasonable market size, just prior to 11.00 am. Eurodeposit rates are volatile but,
due to the trimming, rounding-off and averaging operations, official quotes are not. Table 1 shows the
occurrence of identical consecutive entries in Libor fixing data for various maturities. Repetitions are

indeed quite common from one week to the next, especially for one-month rates.

Some properties of Eurodollar yields are summarised in Table 2. One feature is the shape of the average
yield curve, which is displayed in Figure 3. Some more perspective has been provided to the average

11
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Table 2

Descriptive statistics of observed and estimated Libor

Average of Libor yields/'spreads

T = 1 month 2 months 3 months 6 months 9 months 12 months
Sample »'/rF —rl  6.132/— 6.170/0.038 6.194/0.062 6.247/0.114 6.307/0.175  6.372/0.239
Bessel FL/pk — 7L 6.130/—  6.168/0.038 6.192/0.062 6.248/0.118 6.307/0.177  6.369,/0.239
Kaman #!'/7F —#1  6.112/— 6.146/0.034 6.178/0.066 6.254/0.142 6.304/0.192  6.329/0.216
Standard deviation of Libor
rk 1.860 1.841 1.828 1.781 1.739 1.697
Sample rk —pl — 0.130 0.177 0.287 0.385 0.464
Ark 0.174 0.133 0.141 0.148 0.162 0.159
7k 1.840 1.827 1.816 1.774 1.735 1.692
Bessel Pl — i — 0.103 0.141 0.234 0.309 0.393
A7k 0.161 0.132 0.141 0.147 0.155 0.155
7k 1.766 1.775 1.781 1.783 1.760 1.715
Kaman ph— pl — 0.008 0.015 0.017 0.006 0.050
A7k 0.143 0.143 0.144 0.144 0.142 0.139
First autocorrelation of Libor
rk 0.996 0.997 0.997 0.996 0.996 0.995
Sample rk — pl — 0.65 0.78 0.89 0.92 0.94
ArF -0.02 -0.04 0.04 0.05 -0.01 0.03
7k 0.996 0.997 0.997 0.996 0.996 0.996
Bessel el — 0.63 0.78 0.89 0.92 0.94
ATF -0.01 -0.02 0.05 0.05 0.02 0.04
7k 0.997 0.998 0.998 0.998 0.997 0.996
Kaman Pkl — 0.63 0.77 0.89 0.92 0.94
AR 0.10 0.13 0.19 0.37 0.24 0.14
Skewness/kurtosis of weekly changesin Libor
Sample ArF -0.07/17.7 -1.21/12.3 -1.92/25.0 -2.00/25.1 -1.50/22.2 -1.55/19.2
Bessel AT -0.40/154 -1.37/13.4 -1.98/25.6 -2.00/25.1 -1.71/22.5 -1.65/20.2
Kaman AT -0.22/16.9 -1.20/11.8 -1.80/23.9 -1.53/19.8 -1.21/19.1 -1.48/18.4

The data are end-of-week 11 a.m. fixing rates as calculated by the British Bankers Association. The sample period
is from 24 October 1986 to 20 February 1998 (592 observations). r* is the continuously compounded annual yield,
r* — 1 the spread relative to the one-month rate and Ar* is the weekly change in yields. Estimated rates are
predicated on equation (8). Bessd means estimation with no measurement error on the six-month LIBOR, Kalman
means estimation using a Kalman filter. The parameter values are x = 0.24, A = —0.22, 5, = 0.25, § = 14.68,
a = 2.35 for theformer and k = 0.31, A = —0.49, 5, = 0.66, 0 = 2.83, a = 4.21 for the |atter.
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Libor curve by adding spot ratesimplicitly derived from FRA 12x 18 and 12 x 24 rates. The overall shape
must be treated with caution, since Libor and FRA quotes are not synchronous and come from different
banks. Average yields rise with maturity, with a rate of increase that initially falls and then rebounds
between six and 18 months. The shape of the term structure is thus neither concave nor convex. This
peculiar feature militates against pasting the Libor and FRA rates as if they were adjoining parts of the

Same curve.

Another feature is persistence, measured by the first-order autocorrelation coefficients. They are about
0.996 for all Libor rates and less than 0.05 for weekly changes, suggesting that yields are non-stationary
or borderline stationary. Spreads over the one-month rate exhibit substantially less autocorrelation than
levels, with arising pattern from the short to the long end. To account for this pattern we note that, for
neighbouring maturities, the factor must exert a similar influence on both components of the spread.
With a negligible contribution of the factor, the autocorrelation of the spread resembles that of the
measurement errors. By contrast, for more distant maturities the contribution of the common factor to
changesin the spread becomes dominant. With a highly persistent underlying factor, the autocorrelation

of the spread is all the higher the more distant the maturities.

A third feature concerns volatility. Libor volatility as measured by the standard deviation of yields does
not appear to have a hump shape but instead decreases with maturity. When considered in terms of their
weekly changes, the standard deviations increase dighltly after an initial sharp drop at the one-month
maturity. This significant difference could not be explained if the single factor were the only source
of uncertainty, because both levels and first differences would evince the same pattern of volatility.
On data observed in levels, the factor, which is the most persistent, induces more variability than the
measurement errors. Hence, the pattern of volatility mirrors that of the factor, and the downward-
doping volatility curve suggests that the factor loading curve decreases with maturity. The Situation is
different for weekly changes in yields. The contribution of the factor, which has a near-unit root, is
sharply reduced. By contrast, the measurement errors, which are less than perfectly correlated, induce a
perceptible variance of yield changes over two consecutive periods. In this case, the maturity pattern is

contaminated by variations in the volatility of measurement errors.

The last feature relates to skewness and kurtosis. The excess kurtosis of weekly changes is huge, which
clearly shows that weekly innovations to interest rates cannot be modelled as Gaussian distributions.
32 Estimation

Table 3 reports parameter estimates for the Bessel and Kalman variants. The primary difficulty was

encountered in the Kalman filter, as the estimated variance-covariance €2 in (7) did not converge to a
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Table3
Affine-yield model estimates

Bessel Kalman
Parameter Estimate Std error Student t Estimate Std error Student t
K 0.24 0.07 34 0.31 0.08 3.8
A -0.22 0.06 -3.5 -0.49 0.13 -3.8
B 0.25 0.03 10.0 0.66 0.16 4.2
0 16.2 4.7 34 24 1.2 2.0
« 18 0.3 6.1 55 0.9 6.4
Pl 0.81 0.02 43 0.82 0.02 46
P2 0.85 0.02 55 0.86 0.01 59
Ps 0.85 0.02 54 0.86 0.01 58
P4 — — — 0.72 0.06 11
Ps 0.74 0.02 28 0.75 0.03 28
Pe 0.87 0.02 54 0.88 0.01 59
Mean log likelihood 139 13.8

The parameters «, A, 3y, 6 and « refer to the mean reversion rate, price of risk, short rate volatility, long-
run mean of the factor and lower bound on yields, respectively. The parameters p, are the autocorrelation
coefficients of measurement errors at maturities of one, two, three, six, nine and 12 months. The concentrated
covariance matrix of the Bessal 1og-likelihood function (no measurement error) is used in the Kalman filter.
The standard errors and t-statistics of parameter estimates are based on the usual Hessian matrix.
positive-definite matrix. The Bessel estimation does not have that problem since the variance-covariance
matrix of residuas is actually concentrated out of the likelihood function. For simplicity, we have
eguated the Kalman variance of residuals with the Bessel one, interpol ating the six-month variance from
those of the neighbouring maturities and setting all remaining cross-variances to zero in the estimation.
This restriction is admittedly arbitrary, but reflects our prior that, if the biases implied by both methods
are not too severe, the covariance structure of the innovations to fitting errors should be relatively
close. The Kalman parameter estimates are not sensitive to the particular value chosen for the unknown

variance at the six-month maturity within its prescribed range.

The estimates are of the correct sign and magnitude. They are gatitically significant, although the
small-sample properties of our Libor data do not vindicate the use of asymptotic theory. They differ
significantly across the two approaches, but remain broadly consistent with the features of the data
highlighted in the previous subsection. The mean reversion parameter « is lower for the Bessel than
for the Kalman estimation. The estimated values are 0.24 and 0.32 respectively, which corresponds
to half-lives of 2.9 and 2.2 years. As argued before, the no-measurement-error assumption makes the
factor look more volatile than it actually is. This higher variance is supported by alower x, since alow
mean reversion leads to a more volétile factor. The two mean reversion estimates are associated with
autocorrelation coefficients of 0.995 and 0.994 (weekly), dightly less than the sample autocorrelations
of yields at various maturities, which are about 0.996. Thus, the common factor absorbs most of the high
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persistence in yields, leaving measurement errors with substantially less autocorrelation. Thisdifference
in persistence between the factor and the measurement errors was a key feature needed to explain the
contrasted patterns of volatility and persistence observed in Libor data. The estimated autocorrelation
coefficients of the errors, between 0.7 and 0.9, are quite comparable across the two estimations, but this

may be a consequence of the common covariance assumption mentioned above.

The identifying restriction used to disentangle the factor and the measurement errors is the absence of
arbitrage, which places cross-section restrictions on the coefficients of the measurement equation (5).
If & second factor has been left out of the analysis, these restrictions will be violated, since the single
factor will not capture al the restrictions implied by arbitrage. A test of the overidentifying restrictions
should thus bear out the model on the number of factors. We estimate the model, under both approaches,
with no restriction placed on (5) and carry out standard likelihood ratio tests, keeping the autocorrelation
parameters and the covariance of measurement errors constant. The likelihood ratio statistic (twice the
change in sample likelihood), which is y? with 12 degrees of freedom, is 27.0 for Bessel and 13.8 for
Kaman. The corresponding significance levels are 1% and 30%. Thetest thus favorsthe | atter approach
while rejecting the former, but the result must be treated with care since, among other caveats, it should

be noted that the Kalman likelihood is not the true density of the underlying model.

It is interesting to contrast the performance of the two methods, since their parameter estimates imply
very different shapes for the theoretical forward and volatility curves. Figure 4 compares the mean
theoretical curves r(r,@) with the actual mean curve. Average Libor increases by about two basis
points each month beyond the two-month maturity, and this quasi-linear relation makes it difficult to
fit a model which generates a hump-shaped term structure. Statistical information about the fitting
errorsuf = rf — r(7y, 2) isreported in Table 4. The model curves approximate the average curve to
within a few basis points.® Except for the one-month maturity, the standard deviations of the Bessel
innovations are about half the bid/ask spread of 12.5 basis points during the sample period. By contrast,
the estimated standard deviations of the Kalman innovations are about three times as large. In this
respect, the former method fares better than the latter. However, the autocorrel ations of fitting errors, p,
arein both cases different from the estimates p taken from Table 3. It turns out that the Bessel (Kaman)
method systematically underestimates (overestimates) the autocorreations of fitting errors, suggesting

5 Because the slow rates of mean reversion imply that the long-run mean @ is not estimated with precision, the population
mean z of the factor is different from the estimated value §. One finds 2 = 16.9 for Bessel and z = 0.88 for
Kaman, while the estimates of the long-run meansare § = 16.2 and § = 2.4. The unconditiona variance of z can be
approximated as @/ x>T, where T isthe length of the period (in years). The corresponding standard errors are 4.9% and
1.4%. We calibrate  and the shift parameter o to minimize the discrepancy between the theoretical and the mean yield
curves, leaving unchanged the three parameters «, A and 3,, which determine the shape of the forward and volatility
Curves.
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Table 4

Fittingerrors

Tr = 1 month 2 months 3 months 6 months 9 months 12 months
u 0.02 0.03 0.02 0 0.01 0.04
Oy 0.28 0.21 0.14 — 0.11 0.18
Bessel Oe 0.13 0.08 0.05 — 0.07 0.06
p 0.88 0.93 0.93 — 0.82 0.94
D 0.81 0.84 0.84 — 0.74 0.88
7] 0.02 0.02 0.02 -0.01 0.00 0.04
Oy 0.34 0.26 0.22 0.15 0.17 0.21
Kaman e 0.21 0.18 0.18 0.18 0.18 0.19
P 0.78 0.71 0.58 0.06 0.25 0.55
D 0.82 0.86 0.86 0.72 0.76 0.88

The first entry is the sample average of the fitting errors. Entries o, and o, are the standard
deviations of fitting errors and their innovations. Thelast two variables p and p are the empirical and
estimated first-order correlation coefficients.

that the orthogonality conditions are violated in both cases. We will show in the next section that these

biases can be ascribed to the specific assumptions on which the two methods rely.

To gauge the unconditional properties of the one-factor model, we construct estimates ?’Cﬂ ., Of the

different yields on the basis of equation (8) by

oo =i+ (10=0) (=) + 0= i) () —h )

where ?kmq has the nature of a one-step-ahead predictor. The expression relates the expected change
in rate ?kutq — rF | to the sum of two terms. The first accounts for the slow mean-reversion of yields

toward their steady-state r;, = 7% (6) and the second for their deviations from target: ahigh z, ; implies
that % | is below its theoretical value 7% (2, 1) and is expected to rise. The interpretation is slightly
different for the Bessel and the Kalman approaches. In the first case, the six-month Libor at timet — 1
servesto identify z;,_; directly, from which the whole term structure at time ¢ is derived. In the second,
the term structure at time ¢ is used in the “ correction step” to refine the last estimate of 2, _; obtained at

timet — 1, and this new estimate is used in (8) to uncover a“filtered” term structure at date ¢.

Table 2 compares the unconditional moments of these estimates with their actual sample counterparts.
The Bessdl estimates match the average yields and the standard deviations of yield changes to the third
decimal place. They reproduce reasonably well the persistence and volatility of yields, yield spreads
and yield changes, as well as the skewness and kurtosis of yield changes. In comparison, the Kalman
estimates appear less sensible. In particular, the term structure of volatility is hump-shaped, a feature
which is not supported by the data. One concludes that the left panedl of Figure 2 gives the correct shape,
while the right panel isinvalidated by the data.

18



Table 5 reports the standard deviations of the weekly changesin yields f — ¥ ,, along with those of
the explained component ?’“t‘t_l — rF | and of the error component rf — ?’“t‘t_l. The last is simply the
term €f + 3, w; in (8). The volatilities of prediction errors and weekly changesin yields are very close.
The Bessel method fails to improve on the “naive’ prediction based on the rule?’“t‘t_1 = r;_1, whilethe
improvement for the Kalman method is only marginal. More specifically, expected yield changes and
prediction errors are negatively correlated in the former case and positively correlated in the latter. The
Bessal method will thus tend to overpredict real changes in yields, as the predicted changes in yields
will have to increase by more than necessary to counteract the negative contribution of the error term.
This excess variability is severe enough to make (8) no better than the naive prediction rule. The next

section attempts to explain the source of this anomaly.

Table5

Standard deviations of prediction errorsand expected changesin yields

T = 1 month 2 months 3 months 6 months 9 months 12 months

Ark 0.05 0.03 0.03 0.01 0.03 0.02
Bessel 1k — 7k 0.17 0.13 0.14 0.15 0.16 0.16

Ark 0.17 0.13 0.14 0.15 0.16 0.16

Ark 0.06 0.04 0.03 0.04 0.04 0.03
Kaman rk—7* 0.15 0.12 0.12 0.11 0.13 0.15

Ark 0.17 0.13 0.14 0.15 0.16 0.16

Entries are standard deviations of expected changes Ar¥ = 7#¢ — ¥ || of prediction errors ¥ — 7%
and of yield changes ArF = rk — pk—1,

4. Analysis of specification biases

Table 4 has shown that the estimates p of the autocorrelation of measurement errors were biased
in specific (and opposite) directions. Moreover, we have just seen that each method consistently
misrepresents the direction of weekly changes in yields. We argue in this section that the origin of
the misspecification is more likely to be found in the econometric approaches that were implemented
than in the modd itself. To see this, we consider again (8), written more compactly as

9 Ary=—1—=b)ri—1 — (b—p) wg—1 + & + Bwy

where the maturity superscript and the constant terms have been omitted for simplicity. The very
assumptions on which the econometric methods are predicated prevent ¢, from being the true innovation
to the fitting errors u;. It isthe violation of this orthogonality condition which leads to the systematic
biases documented above.
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Consider first the Bessel approach. Here we assume that there is no error on the six-month Libor,
mistakenly identifying the factor as 5z = (3z + v, where v is the measurement error on the six-month
rate. Substituting z for z in (9), wefind that the measurement innovation becomese; = e; — (v — pv—_1).
Thus, cov (€:,ur—1) = (p — p,) COV (u,v), Where p, is the autocorrelation of the omitted six-month
error. In genera, the sign of the correlation will depend on the relative persistence and covariances
of measurement errors. However, the pattern of autocorrelations in Table 3 strongly suggests that a
minimum is reached at the six-month maturity. Assuming positive comovements between measurement
errors, this implies cov (&, u;—1) > 0. Table 6 confirms that al correlations are indeed positive and
significant, pointing to a clear violation of the orthogonality conditions. This has two implications.

First, noting that the model defines measurement errorsas’e; = uy — puy_1, one has
cov (/6\,5, ut_l) = Cov (ut — ﬁut_l, ut_l)

= (p—p)var(u)
sothat p < p, as Table 6 reveals. Second, the prediction error and predicted yield changesin (9) tend to
move in opposite directions, as yields are expected to decline when « is high. The Bessel forecast must

overestimate the direction of change.

Table 6
Orthogonality conditions
Cross-correlation of measurement errors and lagged error term

7= 1 month 2 months 3 months 6 months 9 months 12 months
Bessd 0.16 0.23 0.24 — 0.13 0.19
Kaman —0.07 —0.19 —0.31 —0.58 —0.46 —0.37

Consider now the Kalman approach. Here, the error termw;_; = r;_1 —r(z;—1) isno longer exogenous
and equation (9) can be rewritten as

(10) Ary = —(1 = p)re—1 + B(b — p) ze—1 + € + Pwy, wy = 2z — bz_1.

The Kalman filter reestimates both z; ; and z; on the basis of new information at time t. A large
interest rate innovation may be due to a large innovation to the factor — in which case w; will be
increased — or to the fact that the state at time ¢ — 1 was underestimated — in which case z;_1 will be
increased. If the weighting is applied properly, both z; and z; 1 will be revised in a manner that leaves
the resulting measurement error ¢; uncorrelated with z;,_;. Unfortunately, the method defines z; as the
mean squared error forecast of a variable that has a large kurtosis. As a result, it gives more weight
to wy than necessary, squeezing both ¢, and z;_;1 in the process. The excessive factor variability thus
generates positive comovements between ¢, and z;_,. Table 6 indicates that the correlation between ¢,
andu;,_1 = ry_1— 3 2,1 isindeed negative. Thisnaturally hasthereverseimplicationsfor the estimated

autocorrelations of measurement errors (p > p) and the direction of change (underprediction).
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5. Implicationsfor the expectations hypothesis

The one-factor model is the most parsimonious way to generate a risk premium endogenoudly. It thus
has implications for the predictability of interest rates. In this section, we use the estimations above to
seeif the one-factor model is capable of accounting for the evidence against the expectations hypothesis.
The predictability “smile”, i.e. the fact that yield spreads help forecast future short rates at short and
long horizons but less so at horizons of about a year, is a major stumbling block of the expectations

hypothesis.

To understand intuitively how the one-factor model behaves with respect to the expectations hypothesis,
we assume away measurement errors and start with a simple forward rate regression involving the short
rate. We then use a standard form of yield spread regression involving changes in one-month Libor to
examine whether the one-factor model conformswith the predictability pattern of interest rates observed
in the data.

51 A simpleforward rateregression

The expectations hypothesis has several forms. A typical statement is that forward rates are the
expectations of future short rates, up to a constant term premium

(11) ft —re=(Erepr —7) +07

where f/ — r; isthe forward spread and E; ;. — 7 iS the expected change in the instantaneous rate.
The expectations hypothesis can be tested by estimating the regression

(12 Tepr — 1t =a+b(f{ — ) + vt

where v; = ¢y — Ex e iSthe forecast error. If the hypothesisistrue, thenb = 1 anda = —p’.
Many explanations for the rejection of the expectations hypothesis have focused on atime-varying term
premium. Asiswell known, if the residual v; is contaminated by arisk premium, b will deviate from

one due to a standard omitted variable problem.

According to the one-factor model, the theoretical expressionsfor the expected change in yields and the
risk premium are, respectively,
Eireor =1t = Bo(l—e ") (0 — 2z)
Pl = fl—Ereer = 0 (kB(r) = Bo(1 = ™) + (B (1) = Bye ™) 2.
To understand intuitively these expressions, consider a positive shock to the expectations process 2z,
which shifts the term structure upwards. Expected yields are revised downwards, since mean reversion

implies that the short rate will gradually return to its equilibrium level. On the other hand, the shape of
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theyield curveisaso influenced by variationsin the term premium.® When interest rates are expected to
fall, borrowers prefer to pay high short rates until long rates eventually fall. Similarly, investors attempt
to invest in long-term bonds in the hope of locking in high yields. The result of both responsesisto raise
the risk premium at the shorter end of the maturity spectrum and reduce it at the longer end, causing the
term premium to be first negatively then positively correlated with expected yield changes.

To ascertain b in the context of the one-factor model without measurement error, we consider (11) asa

signal extraction problem, where the term premium varies through time. The implied regression slope

(13) b(7) = Bo(1 —e™"")/(Bo — B (7))

isdisplayed in Figure 5. The affine model endogenoudy creates a predictability smile, but it generates
aregression coefficient that is greater than one for maturities under two years. To this extent, it worsens
the situation by moving the regression coefficient in the wrong direction. The reason is clear. Over
short-term horizons, a positive shock to the expectations process z; moves the expected change in the
short rate and the term premium in opposite directions. Thus, a faling forward spread indicates that
the expected component has declined even further. In this case, expected changes in the short rate tend
to overpredict the magnitude of forward spreads, making b greater than one. The inability of affine
models to generate both arising mean forward rate curve and a regression slope between zero and one
iswell known, see Backus et al. (1998). Thisisalso truein the present continuous-time framework. The
average forward curve is upward-sloping if and only if A + 3 (7) < 0. Thisimplies that the volatility
curve 3 () cannot fall at afaster rate than x. With 3 (0) = Gy, thisyields 3 (1) > Bye™*", and the

numerator in (13) is larger than the denominator.

The regression dope equation (13) assumes that all shocks to interest rates are captured by a single
factor. As aresult, the expected yield change and the term premium are perfectly correlated. A large
negative correlation raises the regression slope above one. In practice, however, one would expect a
less than perfect correlation. With systematic measurement errors, the one-factor model provides at
best a rough approximation to the true expected yield changes and risk premia. Indeed, part of the
interest rate dynamics has been left unexplained and shifted instead to measurement errors. Thus, even
though in theory the one-factor model cannot account for regression slopes of less than onein asimple
regression such as (12), in practice the presence of systematic measurement errors will bias the slope

estimates downwards. It would be unfortunate to discard the affine model just because we require that

6 The effect on therisk premium depends on 3(7) — B,e™"". Since 3(7)/B(1) = —(k + A + (7)), whether the rate
of change of the impact curve first derivative, 3(7), is above or below —« depends on the sign of A + (7). For short
maturities 5(7) iscloseto zero so A + 5(7) isnegative and 3(7) must lie above 3,e~"". For long maturities, A + 5(7)
becomes eventually positive and B(T) decreases faster than B,e™"". The term premium turns negative as B(r) cuts
below Bye™"".
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it fit all rates exactly, for we would not know if a given shift in the term structure were due to a shift in

expectations or risk premia.

52 Yield spread regressons

Because the variablesin (11) are not directly observable, the expectations hypothesisis usually based on

the approximate relationship
k—1

rf = (1/k) Y Eeriy; +pf
which states that the expected return on holding z'[?123 k-period bond should egual the return on rolling
over one-period bonds, up to aterm premium. A standard regression test is derived by relating the ex
post changesin the short rate over the maturity of the investment to the yield spread
(14 rs,’f =a+b <rf — 7“,51) + vy
where rsf = Y1\ (rt,, — r}) /k isthe rollover spread. The constant a equals the mean of the risk
premium and the error term v; can be viewed as the ex post excess return relaive to the one-month rate.
Asin the smple forward regression, b = 1 if the hypothesisis true, and deviates from oneif v; contains

arisk premium correlated with the yield spread.

Table 7 provides estimates of the parameters of (14) and their standard errors for the three-, six- and
12-month maturities. In all cases, b is estimated to be positive and significantly different from one. As
in most of the empirical literature based on data for the United States, the estimates differ substantially
from the expectations hypothesis. Forward spreads contain information that can be used to forecast
future one-month rates, but the regression slopes decrease monotonically, with the largest departure
occurring at the one-year maturity with a coefficient of 0.66. The constant term rises concomitantly in
absolute value, pointing to an increase in the average risk premium with maturity. This feature of the
data conforms well with theory: as the risk premium increases, forward spreads are less informative

about the future path of interest rates and the regression dope istilted towards zero.

In order to assess the relevance of the one-factor model in this context, we run the same regressions by
replacing ex post with expected rolling spreads. To construct the new series at different points in time,
we compute one-month interest rate forecasts from the theoretical expression (4) evaluated at 7 = 1/12
and use the property that the conditional expectation of the factor is a weighted average of its current
value and its long-run mean. The expected change in the one-month yield over n weeks can be written

as
?t1+n\t —rt = B(1/12) Ei(2t4n — 2)

= B(1/12)(1 — e "/52) (0 — z,)
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Table 7

Rollover spread regressions

Yield spread regression Parameter estimates

rsf =a+b(rf—r})+v, Mauwity a (se) b (se)
3months -0.05 (0.01) 0.77 (0.09)

sy 6 months -0.09 (0.02) 0.69 (0.07)

12 months -0.20 (0.03) 0.66 (0.06)

3months -0.07 (0.00) 0.98 (0.03)

rspe 6 months -0.12 (0.00) 0.87 (0.01)

12 months -0.17 (0.01) 0.64 (0.02)

Theregressions use the Newey and West (1987) correction for MA errors of order k. The dependent
variable is either rs¥, the ex post rollover spread, or rsf’e, the rollover spread estimated from the
Bessel model.

where the factor z; is taken from one of the two approaches described above. For space reasons we

discuss only the results obtained for the Bessel estimation.

The coefficient estimates from the model are presented in Table 7 for comparison. The model is able to
replicate the predictability smile, and the fitted values accord particularly well with the evidence at the
one-year horizon. The estimated mean risk premiaalso track their sample counterparts closely. The one-
month regression slope estimate, by contrast, is very close to what the expectations hypothesis would
dictate. This may be evidence that the one-factor model imposes an excessive negative correlation
between the rolling spread and the risk premium, or that it underestimates the variability of the risk
premium. To assess whether the rollover spread identified with the model s is agood predictor of the
ex post rollover spread rs,, we a so estimate univariate n-step-ahead forecasting egquations of the form
(a5) rsy = c+drsy + ug,

using various yield spreads as overidentifying restrictions. The results in Table 8 present compelling
evidence that the model 12-month rollover spread isagood predictor of itsempirical counterpart, but the
same hypothesisis soundly rejected at the three- and six-month maturities. One plausible interpretation
is that the one-factor modd is too parsimonious to capture the behaviour of interest rates in the short
term.The low p-values associated with the tests of overidentifying restrictionsindicate that current short-
and long-term rates help improve forecasts, so that the predictions based on (15) are not informationally
efficient. In short, the one-factor model provides a good approximation to the behaviour of interest rates
at the horizon of one year and leads to better forecasts than the expectations hypothesis, but there remain

significant tensions between the model and the data at short maturities.
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Table 8
Forecasting equations of therollover spread

Forecasting equation Parameter estimates
rsb =c+drs¥® +u,  Maturity ¢ (se) d (se) p-value

1month -0.01 (0.01) 045 (0.06) 0.00

1 overidentifying 3months -0.02 (0.01) 0.70 (0.07) 0.01
restriction 12 months -0.02 (0.03) 0.99 (0.07) 0.45
1month 0.00 (0.01) 042 (0.05 0.00

3 overidentifying 3months -0.01 (0.01) 0.69 (0.06) 0.01
restrictions 12 months -0.03 (0.03) 0.96 (0.07) 0.05

The forecasting equations use either one overidentifying restriction (the yield spread with the same
horizon as the rollover spread) or three overidentifying restrictions (al yield spreads). The p-values
are the marginal probabilities associated with the tests of the overidentifying restrictions.

6. Conclusion

This paper tries to explain movements in Libor rates with a single-factor affine-yield model. We find
that this model provides a reasonable approximation of the unconditional and conditional properties of
Libor rates, with the Bessel approach providing more sensible parameter estimates than the Kalman
method on the basis of the implied volatility patterns and the size of error innovations. We point out
that it approximates well the behaviour of future rates at the horizon of one year, athough significant
tensions remain between the model and the data at shorter maturities. We also argue that the evidence
of misspecification is likely to originate from the implausible assumptions on which the econometric
methods are predicated rather than from the model itself.

A consistent finding of the term structure literature is that, to reconcile the time-series dynamics of
interest rates with their cross-sectional shapes, models with more than one factor are necessary. We feel
nevertheless that the paper’s effort to confine strictly the number of factors needed to explain Libor rates
isjustified.

First, the choice of a model should reflect the application to which it is put. If the objective is to
manage interest rate risk through sophisticated trading strategies, the need to capture al sources of
uncertainty may reguire alarge number of factors. For central banks, however, the situation is different.
They are more interested in extracting markets' expectations about future interest rates than in pricing
interest raterisk accurately. Aslatent variables, factors are neither amenabl e to straightforward economic
interpretation, nor very suggestive of the joint behavior of short- and long-term interest rates. They may

also fail to provide a sensible account of the predictability pattern of interest rates.
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Second, as emphasised in Gong and Remolona (1997), it isimportant to know whether separate models,
with a reduced number of factors, can fit small stretches of the yield curve. Explaining only part of
the curve holds some promise that it will become possible to fit the whole curve with an appropriately
specified model. This seems especially true with an interbank term structure including FRA prices and
interest rate swaps, since market players have different creditworthiness. Aninterest rate swap curve, for
example, could be derived by discounting future Libor fixings at arisk-adjusted rate. A “driving factors”
approach to the joint behaviour of interest and default rates would gather evidence on how banks have
shifted their undiversifiable risks to other institutions, without having to assume that the Libor and swap
markets have homogeneous credit quality. A related example can be found in the pricing of discount
Brady bonds which, with different contractual arrangements, could be used to uncover sovereign credit

risk. Both examples are part of the author’s research agenda.
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Appendix A

Al One-factor continuous-time model

The price of adiscount bond maturing at 7" is given by

o —efo{- [ e} 12 5]

Let @ be the risk-neutral probability, defined by its density 7, in restriction to F;. Girsanov’s theorem
implies that if the risk-neutral density 7, is governed by dn, /n, = —\,/z; dW;, the process
W, = Wi + Az dt
is aBrownian motion under Q. The sguare root process z follows the stochastic differential equation
dze = (KO — (K + N)z) dt + 2/2dW,

under (). Using the time-homogeneous property of the process, we see that ; ; can be written as

W(r,2) = E¥ [exp {— /{: r(25) dSH 0

Taking (z) = a + [z, the discount function can be expressed as ¢(7,2) = e *" (7, z), where ¢

wherer =T — ¢

solves the backward Kolmogorov equation
d¢

=2+ Lo — Byzp =0,

and L isthe generator associated with z; under Q. The following guess

o(7,2) = exp {—(kby(7) + B(7)2)},
together with the boundary condition (0, z) = 1, leadsto the ordinary difference equations

(16) BT) + (5 + N)B(T) + B2 (1) /2 = B
V() = B()
with 3 (0) = v (0) = 0. Thefirst equation (Ricatti) has as its solution
el T — 92T
B () = Bo

q1e®27 — qae?' T
where ¢; and g are, respectively, the positive and negative roots of ¢> + (k + A\)g — 3,/2 = 0. Upon

integrating 3 () we find
qe®" — qet'”
7)=2In——————.
v (7) q1 — Qg2
The impact function 3 (7) is characterised by the property that its curvature 3 (1) /3 (1) is equal to
—(k+A+0(1)) fordl 7. When x + A < 0, the impact curve 3 (7) is initially convex and then

concave, implying that the factor loading (3 (7) /7 is hump-shaped.
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To study the average yield curve, it is convenient to consider forward rates. Taking the derivative of the
discount function yields
f(1,2) = a+k6B(r) + B(7) 2

and the mean forward rate curve has a slope given by

f(7,0) = =0(A+ 5 (7))B (7).
The slope at the origin is positive and equal to f = —0M\By = =\ (r* — «). It eventually turns negative
if A28, = A+2q1 > 0, inwhich caseit ishump-shaped. Thelast conditionismet if either k? < 23,

ork? > 2B,and \ € (—;{ — VK2 =20y, —k + /K2 — Qﬁo).

The volatility term structure can be derived by fixing the maturity date 7" so that 7 = T — t. The change
of variable f' = f(t,T —t) leadsto

dff’ = (\+ BB (1) 2t + B (7) 2,/ W,
so that the forward volatility curve is defined by (3 (7) z+/%. Since the rate of increase in 3(7) is

—(k+ A+ (1)), itsdopeisgovernedinitialy by x+ X and, for large 7, decaysat arate of K+ A+2q; .

A2. Hump shapesin independent factor models

We show that discrete-time affine models with independent factors can accommodate hump shapes
provided they account for a time-varying term premium. Consider the recursion that characterises the
factor loadings in a one-dimensional Cox-Ingersoll-Ross model; see for example Backus et al. (1998),
p. 9:

(17) Bpi1 =14+ M?/2+ Bup — (A + Bno)?/2

starting with By = 0. We posit

o = By

p = 1-—rke
for some 3, x and small e > 0. By thistoken, the difference equation (17) can be seen as an el ement of
the sequence of recursions indexed by e and defined by
B, =1+ M/2+ B5(1— ke) — (A + BS \/Bye)? /2.
Let 3;, = Bye By,. Weobtain
Gt P _ g, — ) 1, — 522
where \' = )\\/ﬁ_o. Thus, 35, converges to the solution to (16) ase — 0. A necessary and sufficient

condition for ahump isthat x + \" < 0, acondition equivalentto 1 — ¢ + Ao < 0.
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Appendix B

Bl No-measurement-error assumption (Bessel method)

Let r* be the six-month Libor rate. From (4) and (5) with «* = 0, we obtain
7"21 =ga+ By 2.
The sample loglikelihood at time ¢ can be decomposed into two parts.

Conditional Libor transition. With the above change of variable, the first part of the log-likelihood is
In f(z¢|2t—1) — In 34, where f(z¢|2z;—1) is the density of z; conditiona on z;_; one week before. The

function f can be written as

v/2
falan) = o(3) ewi-Gro/2 1 (V)
where ¢ = _ 2%
1 — e /52
T = 2z
¢ = 2ce F/52 4,

v = 2k0—1>0
I,(-) = modified Bessel function of thefirst kind.
For the Bessel function, we have used the integral representation provided by Gradshteyn and Ryzhik
(1980), p. 958. Details about the numerical implementation are available from the author. For the first

observation, we used the unconditiona distribution of z, which is the gamma function

(2'%) v v, —2Kkz

g(z) = mz e

Distribution of measurement errors. Letting ef = uf — p,uF |, wherew, isthe vector of fitting errors

for the five remaining rates, the second part is

1, 1 1
—5629 le, — 3 In|Q| — §1n(27r).
The covariance matrix can be concentrated out of the likelihood function, using

Q= (SLoee) /(T - 1).

B2. Linear filter (Kalman method)

We start the Kalman filter by writing the model (2-5) as
ze = 0(1—0b)+bz 1 +wy, va(w)=q=(1-0b"0/2k
re = g+ 0z +w

up = Rup 1+ €, Var(e) =0



whereb = e~""and R isthe diagona matrix containing the autocorrelation coefficients of measurement

errors. Using 7, = v, — Rri_1, we can transform the model as
zz = 0(1—=0)+bz 1+ wy
re = G+ Hz1+e+ Pwg
withG = 6(1 —b)8 + (I — R)g and H = (bI — R)[3. Note that the measurement innovation of the
transformed model is no longer uncorrelated with the factor innovation, and that the state variable at

datetisz_q.

In the prediction step, we use the rules

zi_1p—1 = 01 —0) +bzy_pjp_1 + We_1p—1
Wt—1 — 0
Tie—1 = G+ Hzi -1,

Let o2

-1 be the conditional variance of z; 1. The covariance matrix of the prediction errorsis

2 2
01 0 O-t\tle/
0 a a3
O-t\tfl qﬁ Et|t—1
where Xy, = Q+¢36' + af‘t_lHH’.

In the correction step, we define E; = (/s — G — H #z_4);_1) and find
21t = Z—ift—1 T ”f\t_lHIEtftl_l Ey
Wyp = quatl,l Eq

the conditional variance of whichis

o2 0 o2, H'
AW _ tlt—1 :|_|: tt-1 :|2 _ {Uz_H qg}
i [ 0 ¢ a3 tlt—1 t|t—1
Thus,

zZ,w b —
U?H\t = [ b 1 ] E1t|t { 1 ] = b20t2\t71 +q— (qﬁ’ + bUtz\tle? Et\tlfl (qﬁ + bUtz\t—lH)
and the Kalman filter is
zgp = 0(1 —b) + bz 101 + Ki By
with K; = (bU152|t—1H, + qﬁ’) Eatlfl. To start the filter, we extract zy;; from

r =g+ Bz +u, var(z)=0/2k, var(uy)=V
with ‘/z'j = Qm/(l — pzpj)
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