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Abstract

In this methodological paper we discuss and apply machine learning tech-
nigues, a core research area in the artificial intelligence literature, to analyse
simultaneously timing, sequencing, and quantum of life course events from
a comparative perspective. We outline the need for techniques which allow
the adoption of a holistic approach to the analysis of life courses, illustrating
the specific case of the transition to adulthood. We briefly introduce machine
learning algorithms to build decision trees and rule sets and then apply such
algorithms to delineate the key features which distinguish Austrian and Ital-
ian pathways to adulthood, using Fertility and Family Survey data. The key
role of sequencing and synchronisation between events emerges clearly from

the methodology used.

Keywords: life course, event history, data mining, machine learning, transi-

tion to adulthood.



1 Introduction

Demographers are mostly concerned with the study of major events that shape peo-
ple’s lives such as births, deaths, migrations, and the formation and dissolution of
households and families. The life course approach, which has been the theoretical
framework behind many recent studies, sees above all the demographic trajecto-
ries and transitions of individuals as a series of parallel trajectories which can be
embedded in other trajectories [31]. These can be marked by demographic events
in the family or the residential spheres, or by events which are thought to have
an influence on demographic behavior (educational and labor market careers are
among the most important in the latter category). The life course approach to the
study of demographic behavior is thus characterised by a holistic point of view.
It thus specifically makes sense to conceive of what we might call '"demographic
life courses’ as—at least partially—the consequences of strategic behavior. That
is, individuals have some general ideas about the future development of their lives.
Research can then only gain from the use of an approach which takes a holistic
point of view on life courses, because decision—making is also partially guided by
unitary principles [20]. The problem is that the techniques used so far hardly allow
one to take such a holistic perspective.

One of the fields that has attracted increasing interest in the demographic life
course literature of the last years is the study of the transition to adulthood. In
this field, the main emphasis is on the study of timing, the sequencing [17],
and sometimes thguantum of specific events—which usually happen during early
adulthood—for a specific cohort of individuals. These events are normally consid-
ered to be indicators of the transition from roles typical of youth to roles typical of
adulthood. For the sake of simplicity, the age at which events are experienced is
taken as an indicator of the timing, the observed order as an indicator of sequenc-
ing, and the observed number of events as an indicator of the quantum. In the
latter case (quantum), if one focuses on the transition to adulthood, the main issue
is whether an event is experienced at all during the life of an individual. As far
as the sequencing is concerned, a critical issue is the simultaneity of events, i.e.,
the experiencing of events in the same time unit, also knowsyrachronisation
[26]. Following a seminal paper by Modell et al. [25], most of the papers studying
the transition to adulthood analyze some specific events: leaving formal education,
entering the labor market, leaving the parental home, experiencing the first union
(sometimes with a differentiation between marriages and consensual unions), and
becoming a parent. This approach is not the only one that could be adopted in a
study on the transition to adulthood [22], but it provides a widely used framework
when one wants to analyze the determinants and study the dynamics of behavior
within a society by comparing cohorts, genders, social groups, and/or different
societies.

For the study of events, the set of statistical techniques which is now broadly
defined agvent history analysis constitutes undoubtedly one of the principal toolk-
its of demography (see e.g. [9]). Event history techniques focus otirtiegto-



event as the dependent variable, and they allow researchers to study very complex
interdependencies between events in the life course, also handling unobserved fac-
tors underlying these complex interdependencies [21]. Event history analysis does
not, however, allow one to adopt a holistic perspective on the life course, that is,
to see the set of events that shape the lives of individuals as a coherent set and to
compare this set for different individuals or groups of individuals. Event history
analysis normally allows for the analysis of the timing and, with some specific as-
sumptions, also of the quantum of events, but it does not allow for the simultaneous
study of the sequencing of events. In general, we might say that it is not possible
to adopt a holistic perspective using event history analysis, because the life course
in its conceptual unit cannot be taken as the variable to be analyzed.

Hence, different techniques have to be envisaged if one wants to look at life
courses from a holistic point of view. Such techniques take as their starting point
the fact that a representation of life courses based on a sequence of states is equiva-
lent to a representation based on events, as long as events are recorded on a discrete
timeline. Thesequence analysis approach is based on a sequential representation
of life courses . It was first applied in the social sciences by Abbott (see the reviews
in [1, 2]). In the sequence-based approach, individual life courses are represented
using a time-oriented string which contains the states occupied at each point in
time (e.g., each month or each year) instead of the events that cause state transi-
tions. The main problem is that the analysis of such data is very complex. One
cannot use in the sequence directly as a dependent variable that has to be explained
by a statistical model. Indeed, it is very likely that in a sample of individuals,
every individual will be characterised by a different sequence. Classification has
thus become the major approach to sequence data analysis in the social sciences.
Some techniques used in the natural sciences, such as optimal matching, have been
used to cluster life courses in different groups. However, it is sometimes difficult
to identify the reasons why some individuals are assigned to a specific group, and
it is unclear how much this assignment depends on the distance between states,
which has to be assigned subjectively by the researcher. Other techniques for the
analysis of sequence data are based on monothetic divisive algorithms that result in
a classification tree [4]; the latter have been proposed for grouping individuals ac-
cording to their states at different points in time. While these trees are quite similar
to the decision-tree learning techniques used in this paper, so far their use has been
restricted to the study of non-repeatable events, and they do not explicitly take into
account the order of events.

In this paper, which was written primarily for methodological reasons, we pro-
pose a solution to the problem of analyzing simultaneously the timing, the sequenc-
ing (including the synchronisation on a monthly time basis), and the quantum of
events in life courses. To this aim, we employ some techniques that have been de-
veloped in the field of Artificial Intelligence. In particular, we use state-of-the-art
machine learning algorithms to detect the basic features (of timing, sequencing,
and quantum) that differentiate two groups of life courses. We apply two machine
learning algorithms to analyze the transition to adulthood in two European coun-
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tries, Austria and Italy. Our results underline the crucial role of the information
about the sequencing of events in the analysis of transition to adulthood.

The paper is structured as follows. In Section 2, we introduce some basic
notions of the machine learning and data mining approach, which are partially
novel to a social science audience. In Section 3, we present the data we use and
discuss some of the basic features of the transition to adulthood in Austria and
Italy. Section 4 introduces the experimental setup, and it provides a presentation
and discussion of the results. Section 5 contains some final remarks.

2 MachineLearning and Data Mining

Machine learning is one of the core research areas in Artificial Intelligence. These
days the most prominent research topic within the field is the inductive analysis
of databases. Together with statistics and database technology, this area provides
the core methodologies for the rapidly developing field iihowledge Discov-

ery in Databases, also known a®ata Mining [14], which has recently attracted

the interest of industry and is considered by many to be one of the fastest-growing
commercial application areas for Artificial Intelligence techniques. Machine learn-
ing and data mining systems are used for analyzing telecommunications network
alarms, supporting medical applications, detecting cellular phone fraud, assisting
basketball trainers, controlling elevators, categorizing celestial bodies, and clas-
sifying documents on the World-Wide Web, to name only a few applications. A
selection of recent applications in machine learning and data mining can be found
in [23], and excellent textbooks for the research area are [24, 32]. Within the so-
cial sciences, however—and demography is no exception—these tools have not yet
received much attention despite the importance of data-oriented research.

In the remainder of this section, we will briefly introduce the classification
problem we are dealing with and discuss two common approaches to solving it:
the induction of decision trees and inductive rule learning. It can be safely skipped
by readers familiar with these techniques.

2.1 Problem Description

The task that has received the most attention in the machine learning literature is
the following: given a database of observations (described with a fixed number of
measurements;, so-calledfeatures or attributes) and a designated attributethe

class, find a mappingf that is able to compute the class valpe- f(zi,...,z,)

from the feature values of new, previously unseen observations. While there are
statistical techniques that are able to solve particular instantiations of this problem,
machine learning techniques provide a strong focus on the use of categorical, non-
numeric attributes and on the immediate interpretability of the result. This, in
particular, is one of the main reasons for the increasing popularity of machine
learning techniques in both industry and academia.



Temperature Outlook Humidity Wndy Golf?

hot sunny high false no
hot sunny high true no
hot overcast high false yes
cool rain normal false yes
cool overcast normal true yes
mild sunny high false no
cool sunny normal false yes
mild rain normal false yes
mild sunny normal true yes
mild overcast high true yes
hot overcast normal false yes
mild rain high true no
cool rain normal true no
mild rain high false yes

Table 1: A sample database

Table 1 shows a small sample database, taken from [29]. Given are four
attributes—temperature, outlook, humidity, and windy—that measure certain envi-
ronmental conditions that might be relevant for a person’s desire to go out and play
golf. The database contains 14 instances of past behavior of this person: weather
conditions along with her decision whether she went out to play golf or not. The
learning task is to use thisaining set for deriving a model that is able to predict
for new weather conditions whether the person is likely to play golf or not. Note
that the focus here idiscrimination and notcharacterisation. When learning dis-
criminative models, one is interested in a minimal set of features that allow one to
discriminate objects of one class from objects of another class. This is different
from learning characteristic descriptions, which try to describe the commonalities
of all objects of a given class. For example, it is easy to discriminate an elephant
from all other mammals by referring to its tusks and trunk. A characteristic descrip-
tion would also have to mention size, weight, ears, skin, etc., in short, everything
that is needed to explain what an elephant looks like (as opposed to everything that
is needed to recognise an elephant).

2.2 Induction of Decision Trees

The induction of decision trees is one of the oldest and most popular techniques for
learning discriminatory models [29]. Becision treeis a particular type of classi-
fication model that is fairly easy to induce and to understaRajure 1 shows a
sample tree which might be induced from the data of Table 1. Classification of a

1In the statistical literature (cf., e.g., [6]), decision trees are also knowtassfication trees. Re-
lated techniques for predicting numerical class values are knowegrassion trees. Such techniques
are also used for predictive purposes in survival analysis. An interesting application of regression
trees to demographic data is [10].



yes no no yes

Figure 1: A decision tree describing the dataset shown in Table 1.

new example starts at the top node—thet—and the value of the attribute that
corresponds to this tree is consider&lif| ook in the example). Classification
then proceeds by moving down the branch that corresponds to the particular value
of this attribute, arriving at a new node with a new attribute. This process is re-
peated until we arrive at a terminal node—a so-caleafl—which is not labeled
with an attribute but with a prediction. Figure 1 shows leaves as rectangular boxes.

Decision trees are learned in a top-down fashion: the program selects the best
attribute for the root of the tree, splits the set of examples into disjoint sets (one for
each value of the chosen attribute, containing all training examples that have the
corresponding value for this attribute), and adds corresponding nodes and branches
to the tree. If there are new sets that contain only examples from the same class,
a leaf node is added for each of them and labeled with the respective class. For
all other sets, an interior node is added and associated with the best attribute for
the corresponding set as described above. Hence, the dataset is successively par-
titioned into smaller datasets until each set only contains examples of the same
class. This condition can always be satisfied unless the training data contains con-
tradictory examples, i.e., examples with the same feature values but different class
values.

The crucial step in decision tree induction is the choice of an adequate attribute.
To see the importance of this choice, consider a procedure that constructs decision
trees simply by picking the next available attribute. The result is a much more com-
plex and less comprehensible tree (Figure 2). Most leaves originate from a single
training example, which means that the labels that are attached to the leaves are not
very reliable. Although the trees in Figures 1 and 2 will both classify the training
data correctly, the former appears to be more trustworthy, and it has a higher chance
of correctly predicting the class values of new dafehe problem of generating
overly complex models that explain the training data but do not generalise well to

2This preference for simple models is a heuristic criterion know@@sm's Razor, which ap-
pears to work fairly well in practice. It is often recalled in the statistical literature on model selection,
but it is still the subject of ardent debates within the machine learning community [11].



Figure 2: A bad decision tree describing the dataset shown in Table 1.

unseen data is known aserfitting.

The attribute selection criterion that is most commonly used in decision tree
induction algorithms isnformation gain. It measures the amount of information
that can be gained about the class membership of the training examples by splitting
the examples using attributg. The formula for choosing the most promising
attributez,. is

Tr = arg max | — Zp(c) log p(c) + Zp(azz =v) Zp(c|3:i = v) log p(c|z; = v)
(1)

wherec iterates over all class values andterates over all possible values of the
attributez;. The first term measures the information content of the class distri-
bution in the current set. From this term, the second term is subtracted (note that
the sums are negative!), which measures the weighted average of the information
contents of the sets that result from splitting using attribgiteMaximising this
difference results in the choice of the attribute which reduces the heterogeneity in
the class distributions in the successor nodes the most. This enforces a fast conver-
gence towards nodes where the majority of the examples belong to the same class.
Of course, this “greedy” procedure will only find locally optimal choices for the
attribute. For details we refer the reader to [29, 30, 24, 32].

Obviously, the choice depends on the quality of the estimates for the proba-
bilities used in Formula 1. Typically, these are estimated with the corresponding
frequencies in the datasets. However, due to the successive splitting of the data,
the datasets that are used for estimating these probabilities become smaller and
smaller; hence, the attribute choices become increasingly inaccurate. This effect
is strengthened if the data containise, i.e., erroneous measurements for some



I F Outlook = sunnyAND Humidity = normal
THEN yes

I F Outlook = sunnyAND Humidity = high
THEN no

| F Outlook = overcast
THEN yes

| F Outlook = rainAND Windy = true
THEN no

| F Outlook = rainAND Windy = false
THEN yes

Figure 3: A rule set describing the dataset shown in Table 1

attribute or class values (which is quite common in real-world applications). This
is the main reason why state-of-the-art decision tree induction techniques employ
a post-processing phase in which the tree generated with the above procedure is
simplified bypruning branches and nodes near the leaves. In effect, this procedure
replaces some of the interior nodes of the tree with a new leaf, thereby removing
the subtree that was rooted at this node. The exact details of this procedure are
beyond the scope of this paper (we again refer to [30]), but it is important to note
that the leaf nodes of the new tree are no long@e nodes, i.e., they no longer
contain training examples that all belong to the same class. Typically, this is simply
resolved by predicting the most frequent class at a leaf. The class distribution of
the training examples within the leaf may be used as a reliability criterion for this
prediction.

2.3 Induction of Rule Sets

Another important machine learning technique is the induction of rule sets. Rule
sets are typically simpler and more comprehensible than decision trees. To see
why, note that a decision tree can also be interpreted as a setTHEN rules.

Each leaf in the tree corresponds to one rule, where the conclusion of the rule is
the label of the leaf, and the conditions encode the path that is taken from the root
to this particular leaf. Figure 3 shows the set of rules that corresponds to the tree
in Figure 1. Note the rigid structure of these rules. For example, the first condition
always uses the same attribute, namely, the one used at the root of the tree. As we
shall see, this does not have to be the case if the rules are learned directly.

The main difference between the rules generated by a decision tree and the
rules generated by a rule learning algorithm is that the former rule set consists
of non-overlapping rules that span the entire instance space (i.e., each possible
combination of feature values will be covered by exactly one rule), while the lat-
ter consists of potentially overlapping rules that need not span the entire instance
space. In this case, mechanisms for tie breaking (i.e., which rule to choose when
more than one covers the given example) and default classifications (what classifi-



| F Outlook = overcast
THEN yes

I F Humidity = normal
THEN yes

I F Humidity = high
THEN no

DEFAULT yes

Figure 4: A smaller rule set describing the dataset shown in Table 1

cation to choose when no rule covers the given example) are needed. Typically, one
prefers rules with a higher ratio of correctly classified examples from the training
set.

Figure 4 shows a particularly simple rule set which uses two different attributes
in its first two rules. Note that these two rules are overlapping, i.e., several exam-
ples will be covered by more than one rule. For instance, examples 3 and 10 are
covered by both the first and the third rule. These conflicts are typically resolved
by using the more accurate rule (the first one in our case). Also note that these
rule sets make two mistakes (the last two examples). These might be resolved by
resorting to a more complex rule set (like the one in Figure 3) but as stated above, it
is often more advisable to sacrifice accuracy in the training set for model simplicity
to avoid overfitting. Finally, note the default rule at the end of the rule set. This is
added for the case when certain regions of the data space are not represented in the
training set.

It is beyond the scope of this paper to provide a detailed description of algo-
rithms that learn such rule sets. However, the underlying ideas are quite similar
to the ideas used in decision tree induction. The key idea to rule learning is that,
instead of successively splitting the example set into regions with increasingly uni-
form class distributions (in the literature, this strategy is also knowdivéde-and-
conquer learning), rule learning algorithms immediately try to focus on regions in
which a certain class prevails. This is done by learning a single rule first, removing
all examples that are covered by this rule from the training set, and repeating this
procedure with the remaining examples (this strategy is also knoveepasate-
and-conquer learning). Each rule is learned by picking the best condition (i.e., the
test for the presence of a single attribute value that identifies the subset of exam-
ples with the most uniform class distribution) and adding it to the rule until the
conjunction of all conditions in the rule covers only examples from a single class.
Again, pruning is a good idea for rule learning, which means that the rules only
need to cover examples that arestly from the same class. It turned out to be
advantageous to prune rules immediately after they have been learned, i.e., before
successive rules are learned [15]. For a detailed survey of rule learning algorithms
we refer the reader to [16].



3 Motivation and data

The transition to adulthood is one of the areas in the sphere of life course events
where present-day European countries exhibit a high behavioral heterogeneity [5,
18]. In some countries events are experienced at an early age, while they are post-
poned to later ages in others. The sequencing of events is also very different, as
is sometimes the quantum [8]. These differences, which are linked to cultural and
historical patterns, present opportunity structures, and institutional arrangements,
are even clearly visible if one considers neighboring countries. In this paper we
study Austria and Italy. The choice of these two countries is justified by the differ-
ent patterns of transition to adulthood they exhibit—this provides us with a clear
benchmark, and some prior knowledge, with which we confront the method. In
Austria, the duration of education is quite standardised, and the vocational training
system allows for a potentially smooth transition from school to work. Further,
leaving home occurs to a great extent before marriage, and there is a traditionally
high share of births outside of cohabiting (married or unmarried) unions. In Italy,
the duration of formal education and entry into the labor market are experienced
in a rather heterogeneous way. Leaving home occurs at a late age—the latest age
observed among Western countries for which data are available. And leaving home
is highly synchronised with marriage. It is not common to leave home before fin-
ishing education. Finally, childbearing outside of marriage is still less common
that in other European countrfesespectively.

The data for our analysis originate from the Austrian and Italian Fertility and
Family Surveys (FFS), which were conducted between December 1995 and May
1996 in Austria and between December 1995 and January 1996 in Italy. Both sur-
veys were part of a large-scale comparative program co-ordinated by the Economic
Commission for Europe of the United Nations. The survey design provided inde-
pendent samples of men and women in both countries. In Austria, 4,581 women
and 1,539 men were interviewed, in Italy 4,824 women and 1,206 men. In Aus-
tria respondents were selected from the population aged 20 to 54, while in Italy
the age range was 20 to 50. Hence, the Austrian FFS covers birth cohorts from
1941 to 1976, while the Italian FFS only includes cohorts from 1946 to 1976. To
avoid differences due to sampling design, we opted to restrict the Austrian data
set to the same cohorts as covered in the Italian survey. Furthermore, we excluded
records with missing or incorrect values for the timing of events that are included in
our analysis. The final dataset contained 11,107 individwsr{les in machine
learning terms), 5,325 of which were of Austrian and 5,782 of Italian origin.

In the FFS, retrospective histories of partnerships, births, employment, and
education (in a more or less complete fashion) were collected on a monthly time
scale, which allows us to study the timing, sequencing, and quantum of events in
the transition to adulthood. In this study, we analyse the timing and quantum of

3Specific descriptions and analyses of the transition to adulthood in Austria and Italy are provided
in [27] and in [3].
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General Descriptors

sex female, male

birth cohort (5 years) 1946-50, 1951-55, 1956-60, 1961-65, 1966-70, 1971-75

birth cohort (10 years) 1946-55, 1956-65, 1966-75

age age at interview in years
Quantum

education finished? yes, no

had job? yes, no

left home? yes, no

formed union? yes, no

married? yes, no

had child? yes, no
Timing

education age at end of education

first job age at first job

left home age at leaving home

union age at first union

marriage age at first marriage

children age at the birth of first child

Ages are measured in years.
If the event has not yet occurred,

theinterview dateis used.

Sequencing
education/ job
education / left home
education / union
education / marriage
education / children
first job / left home
first job / union
first job / marriage
first job / children
left home / union
left home / marriage
left home / children
union / marriage
union / children
marriage / children

<,>,=,n.0
<,>,=,n0
<,>,=,n.0
<,>,=,nh.0
<,>,=,nh.0
<,>,=,n.0
<,>,=,Nn.0
<,>,=,n.0
<,>,=,Nn.0
<,>,=,nh.0
<,>,=,nh.0
<,>,=,n0
<,>,=,n.0
<,>,=,n.0
<,>,=,h.0

For each possible combination of timing variables, their relative order is computed, or
“n.o” isusedif bothevents have not yet (i.e. before the interview date) occurred.

Table 2: Variables used in the experiments
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leaving formal education, entering the first job, leaving the parental home, entering
first union, entering first marriage, and having a first child, together with their
pairwise sequencing. If individuals have not experienced an event, we consider in
our analyses variables explicitly indicating that they are censored. Such variables
are used as information concerning the quantum of the event.

Two peculiarities of the data need to be mentioned. First, the Austrian FFS
only allows one to know when the respondent left home for the last time before
the interview, while the Italian FFS explicitly asked when the respondent left home
for the first time. This difference should not, however, be a big problem in our
comparative analysis: we will be more conservative in comparisons and underes-
timate differences, as Austrians leave home much earlier than Italians do anyway.
Secondly, several problems arise when one wishes to compare educational histo-
ries across countries even using FFS comparative surveys [12]. For instance, a
considerable number of respondents in Austria (1,639 out of a total of 6,020 re-
spondents) have not indicated any educational level beyond 'Pflichtschule’, which
is completed at age 15 in Austria. Although education was mandatory until the age
of 14 for the Italian cohorts taken into account here (which is already a significant
difference from Austria), there are a significant number of people who dropped out
before that age. Hence, we should expect institutional and drop-outs differences
in the timing of education to show up as an important attribute for differentiating
between the Austrian and Italian pathways in the transition to adulthood. We will
discuss this further in Section 4.3.

To capture information about timing, sequencing, and quantum, we encoded
the information as is shown in Table 2. We used four general descriptors related
to sex, age, and birth cohort (with two potentially different categorisations for co-
horts). Binary variables are used to indicate whether each of the six events that
we employ to characterise the transition to adulthood has occurred in the person’s
life up to the time of the interview (quantum), similarly to what is done in event
history analysis for event/censoring indicators. If an event has occurred, the cor-
responding timing variable contains the age at which the person experienced the
event (computed in years between the birth date and the date at which the event
occurred). Finally, to make sequence information accessible to the learning algo-
rithms we performed pairwise comparisons between the dates at which two events
occurred. The sequencing relationship, including synchronisation (one date can be
smaller or greater than or equal to the other), is encoded as a separate Yariable.
If both events have not occurred, we encode this with a designated value “n.o.”.
In the case that one of the two events has occurred but not the other, we assume
that the one that has occurred occurs earlier, even though the other event might not
occur at all in this person’s life course. As the time unit for computing sequencing

4This approach to making sequence information available to the learner—encoding the additional
relations in derived variables—is loosely based on the Linus approach to relational learning (cf., e.g.,
[19], where learning performance was improved in a medical application by augmenting patient data
with additional domain-specific background knowledge that highlighted characteristic combinations
of the original measurements).
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and synchronisation between two events, we use the month. That is, we use all the
information available in the dataset and place a specific emphasis on events that
are truly synchronised.

4 Results

4.1 Experimental Setup

We applied decision tree and rule learning algorithms to the dataset described in the
previous section in order to detect the key features which distinguish between Aus-
trians and Italians with respect to the timing, sequencing, and quantum of events
in the transition to adulthood. We chose the decision tree learning algorithm C4.5
[30] and the rule learning algorithm Ripper [7]. Both algorithms are among the
most prominent algorithms in machine learning and are frequently used both for
applications and as benchmarks for new algorithmic developments. Their popular-
ity is also due to their wide availabilify.

In addition to the functionalities described in Section 2, both algorithms are
able to handle numerical attributes. C4.5 does this by testing the congition
for each possible value of the attributez; and computing the information that
is gained by partitioning the data according to the outcome (r false) of this
test’ This can then be directly compared to the information gain values computed
for the categorical attributes. The procedure for Ripper is quite similar. C4.5 also
provides an option that allows different values of the same attribute to share the
same branch of the tree. We used this option in some of our experiments with the
result that the obtained trees were mostly binary.

To estimate the error rates of the learned models we use 10-fold cross-validations
[28]. This means that 10 experiments are performed, and in each experiment (each
fold) a tenth of the data is held out and a model is learned on the remaining nine-
tenths. The model learned is then tested on the tenth of data that has been withheld,
and the results from these ten (disjoint) test sets are averaged. Note that one cannot
simply estimate the error rate of the model from the training data because with in-
creasing model complexity, the algorithms can fit the training data arbitrarily well.
However, this fit cannot be expected to hold for new data, a problem that is known
asoverfitting. Our cross-validation folds wegaired (i.e., the same 10 folds were
used for computing the performance estimates of both algorithms, which reduces
random fluctuations) andratified (i.e., the number of examples of each class in

®Other scholars argue that, since decision-making occurs on a fuzzy time scale, larger intervals
for synchronisation should be considered, e.g., a yearly interval [9].

6C4.5 can be obtained by buying the companion book [30], or it can be downloaded for re-
search purposes ht t p: / / wwv. cse. unsw. edu. au/ " qui nl an/ . C5.0, its commercial suc-
cessor, is available fromt t p: / / ww. r ul equest . com . Ripper is available upon request at
http://ww.research. att.com “di ane/ri pper.htm.

"The algorithms actually implement a more efficient version of this technique, which sorts the
values first and tests only values whose successor has a different class value. It can be shown that
this procedure produces the same result as testing all values [13].
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C4.5 Ripper
Feature Set Error  Size| Error  Size
only general descriptors 45.97  42.1| 46.83 15.7

quantum 3344 117.4| 3399 389
timing 2052 778.2| 19.15 154.4
sequencing 1796 265.7| 1840 48.2
quantum & timing 19.40 751.7| 18.62 188.8

quantum & sequencing 17.37 267.0| 17.94 42.1
timing & sequencing 1514 584.9| 1518 116.4

all features 15.05 533.7| 14.94 99.4

Table 3: Error rates (in %) and average size (no. of conditions) for C4.5 and
Ripper on different problem representations (estimated by paired 10-fold cross-
validations).

each fold was fixed in order to model the class distribution of the original set as
closely as possible).

4.2 Quantitative Resultswith Different Specifications

In order to determine the relative importance of the quantum, timing, and sequenc-
ing of events that characterise the transition to adulthood, we performed a series of
experiments in which we used different subsets of the available features. Each line
of Table 3 shows the achieved performance of one particular feature subset. The
first column describes which feature subset is used, the second and third columns
show the performance estimates for C4.5 and Ripper, respectively. For both algo-
rithms, we show both the error rate in percentage points and the average size of
the model learned (measured by the number of nodes in the decision tree or the
number of conditions in the rule set, respectivély).

The first line shows the results from using only the four general descriptors
shown at the top of Table 2 and none of the quantum, timing or sequencing vari-
ables. On this data set, both algorithms achieve error rates that are only slightly
better than the error rate of uniformly predicting that all examples belong to the
majority class, which has an error rate of 47.94%. These values are included as a
benchmark and for checking that the relevant information for satisfactory classifi-

8In contrast to the error rate, the size of the models learned could have been measured directly by
using the entire set of examples for training. However, we report the average model sizes in the 10
folds of the cross-validation procedure, which came for free as a by-product of the cross-validation
procedure. The size of the models learned from the complete training set might be somewhat larger,
but their relative order can be expected to be the same.
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cation performance is captured by the other variables. The next three lines show
the results from using each subset independently, i.e., using only quantum, only
timing, or only sequencing information. Among these three, sequencing proves to
be most important. Using only sequencing information, both learning algorithms
are able to discriminate the life courses of Italians and Austrians with an error rate
of about 18%. Quantum information—in the simple encoding that shows only the
occurrence or non-occurrence of an event—seems to be the least important. These
results are confirmed by the next three lines, which show the performance of each
pair of variables. The pair quantum & timing—the only one that does not use se-
guencing information—produces the worst results, while the timing & sequencing
pair, which does not use quantum information, performs best. It should be noted,
however, that quantum information is still of importance, as can be seen from the
last line, which shows the results obtained using all variables shown in Table 2.
Adding quantum to the timing and sequencing information further reduces the er-
ror rate (although this decrease is not statistically significant) and also results in
simpler models.

In general, the error rates achieved by the two algorithms are about equal. Rip-
per seems to be a little better in handling timing variables, which may be due to
minor differences in the handling of numerical attributes in the two algorithms. But
the evidence from this dataset is insufficient to confirm this hypothesis, and there
is no systematic comparison along this dimension in the literature. One can say,
however, that rule sets are considerably simpler, which also means that they are
easier to interpret.

The rule model that uses all features still has about 100 conditions and C4.5’s
decision tree has more than 500 nodes. Rule sets and trees of that size are very hard
to interpret as a whole—one would have to focus on the important aspects (e.qg.,
the areas near the root of the tree). Alternatively, one can make use of the pruning
mechanisms of the algorithms to find a reasonable trade-off between simplicity and
accuracy.

Both algorithms have a parameter that controls the pruning level of the algo-
rithm. The exact details of the pruning procedures are somewhat different in the
two algorithm& but both pruning parameters have the purpose of controlling the
size of the models learned. This can be used for finding a model size that minimises
the estimated error rate as well as for increasing comprehensibility of the models
learned.

Figure 5 shows the error and complexity curves for C4.5. It was used with
the parameter settings described at the beginning of the next section except for
the pruning parameter, which was varied. The measured error rates and model

°C4.5 employserror-based pruning, which uses a heuristic estimate of the confidence intervals
for the accuracy of the class probability estimates at each node [30]. Ripper’s pruning is based on the
incremental reduced error pruning technique [15], which internally splits the available training data
into a learning set and a pruning set and uses the latter to fine-tune the rules learned on the learning
set.
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C4.5 - Error and Complexity vs. Pruning Factor
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Figure 5: Error rates and model complexity for different settings of C4.5’s pruning
parameter.

sizes are plotted over the different values of the pruning parameter. The graph
clearly exhibits the typical U-shape of error curves: overly complex models may
overfit the data while overly simple models will fail to capture some important
regularities in the data. Consequently, the best achievable error rate (about 14.45%)
is somewhere in the middle, around 10-15 in our case (but this range may be very
different for other datasets). C4.5's default value (25), which has been shown to
perform reasonably well over a variety of datasets, is close to this. Systematically
varying Ripper’s pruning parameter led to similar results.

4.3 Interpretation of Results

In this section we analyze the results of two models, one decision tree and one rule
set. These models were obtained by using parameter settings that produce more
comprehensible models, which are not necessarily optimal. In particular, we al-
lowed C4.5 to combine branches with different attribute values (in default mode it
will generate one branch for each possible outcome of a test, i.e., for each possible
attribute value), and we specified that Ripper has to learn a rule set for each class
(not only for the minor class, which classifies everything else by a default rule). We
chose rather aggressive settings for the pruning parameter (0.001 for C4.5), which
do not produce models with maximal accuracy, as can be seen from a quick inspec-
tion of the graphs in Figure 5. It should be noted, however, that the differences in
accuracy are not that large and, more importantly, that the more accurate, complex
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models differ from the less accurate, simpler models only in the lower parts of a
tree. The upper part, i.e., the choice of the most significant variables, is the same.
It is not quite as simple for rule sets, but the starting conditions of the rules are
typically more significant and are identical in simpler and more complex models.

Figure 6 presents a simplified tree that uses only 32 nodes. Its estimated error
rate is about 15.5%. Its most important attribute is the sequencing of union for-
mation and marriage. Following the right branch that originates at this node and
summing over all entries in each leaf implies that 5,445 Italians versus 2,506 Aus-
trians are covered by this path. From these results we can already deduce a first
proposition:

An important characteristic of the transition to adulthood that iden-
tifies Italians is the fact that union formation and marriage are more
likely to be synchronised. That is, Italians are much more prone than
Austrians to marry directly rather than to start living together before
marriage.

This result is in accordance with the literature stressing the low diffusion of
consensual unions in Italy.

In the case when there is no synchronisation of marriage and union formation
(i.e. if we follow the left branch that originates at the first node), the age at which
education is finished (i.e., the timing of education) is chosen as the next most im-
portant attribute. Those who finished their education after the age of 14 are then
most likely Austrians (2,807 Austrians vs. 253 Italians). In the case that education
is finished before the age of 14, a further attribute is added that compares the se-
guencing and quantum of education and leaving home. However, the total number
of cases captured by this branch is negligible (84 Italians and 12 Austrians), and
it might in part be due to the differences in the educational system of Austria and
Italy (see Section 3). We will return to this issue later in this section.

If we follow the right branch of the decision tree, that is, in the case either
of synchronisation of marriage and union formation or of no experience of these
events, the discrimination rules are not as straightforward. However, adding the
birth of the first child as the third event and comparing the sequencing and quantum
of the date of union formation and the birth of the first child essentially helps
to distinguish between Italians and Austrians. Following the right hand branch
starting at the second node we are led to a second proposition:

If the date of union formation and marriage coincides (or if neither
event has yet occurred) Austrians are more likely than Italians to have
had a child before this union.

Though the timing of education is added as a further attribute to this branch,
the number of cases included in the final leaf that identifies Italians is negligible.

The classification becomes more complicated if neither event (union forma-
tion nor birth of first child) has occurred or if union formation precedes the birth
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Figure 6: A decision tree applied to data on the transition to adulthood in Austria
and Italy. The numbers indicated in each leaf are always ordered such that the
first number refers to Austrians and the second number refers to Italians that are

covered by this rule.
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of the first child. This branch includes 5,341 Italians and 1,927 Austrians. Now
the timing of education becomes truly important (as we expected) for further dis-
criminating between Austrians and Italians. Those who completed their education
before the age of 15 are most likely to be Italians (1,539 Italians vs. 8 Austrians).
Nevertheless, 3,802 Italians and 1,919 Austrians are not yet distinguished in the
case that education is completed after the age of 15. A fourth attribute, which
refers to sequencing and quantum of the end of education and start of the first job,
adds further information. Those for whom the end of education and the start of
the first job are synchronised are most likely to be Austrians (119 Italians vs. 347
Austrians). In the case that the sequencing between end of education and start of
the first job is indeterminate, or if neither event has yet occurred, a fifth attribute
is added. It is at this stage that the age at the time of leaving home is considered.
Those for whom leaving home is synchronised with union formation, or for whom
neither event has yet occurred, are most likely to be Italians (3,008 Italians vs. 779
Austrians). If these two events are not synchronised (or their sequencing is not
yet known), a more complicated decision rule is proposed, which includes the tim-
ing of education once again. It also adds the sequencing and quantum of leaving
home, union formation, and the start of the first job. Finally, it includes information
about cohort membership at the final node. These results lead us to suggest a third
proposition:

In the case of more traditional patternsin the transition to adulthood,
where union formation is synchronised with marriage (or neither of
these two events has yet occurred) and the birth of the first child—if it
has yet occurred—comes after union formation, the length of educa-
tion and the sequencing of the end of education and the first job are
two further important discriminating factors.

In particular, those who finished education before the age of 15 are most likely
to be Italians. Among those who finished education after the age of 15, Austrians
are discerned from Italians by the fact that the end of education and the first job are
synchronised or that leaving home and union formation are synchronised (or have
not yet been experienced).

As already indicated in Section 3, the timing of education in Austria and Italy
reflects institutional differences in the educational system. To test the importance
of such institutional differences (as opposed to less formalised differences in the
transition to adulthood) we applied the decision tree algorithm to the same data
set except that we excluded the length of education as an attribute. The resulting
decision tree is presented in Appendix, Figure 8. Its error rate is 2.2% higher
than that of the tree in Figure 6, which is allowed to use length of education. A
comparison of both trees supports our first two propositions, which were already
derived from Figure 6. The sequencing and quantum of the events union formation,
marriage, and birth of first child are major attributes for distinguishing between
Austrians and Italians, as is the synchronisation (or joint absence) of leaving home
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I F home= marriage
THEN ITA (592/2851)

IF home= n.o. AND union= n.o. AND child = n.o.
THEN ITA (465/1692)

| F union= marriageAND educatior< 14
THEN ITA (9/1308)

I F educatiorn> 22 AND union= marriageAND union> 24
THEN ITA (64/541)

IF home< marriage
THEN AUT (3476/976)

IF home> marriageAND home= yesAND education> 15
THEN AUT (533/46)

I F educatiorn> 15 AND job < 18 AND education< 18 AND union< 21
THEN AUT (1468/215)

DEFAULT AUT (197/105)

Figure 7: A rule set describing the data on the transition to adulthood in Austria
and Italy. The numbers indicated at the end of each rule are always ordered such
that the first number refers to Austrians and the second to Italians covered by the
rule.

and first union. If we follow the first two right-most branches in the decision tree in
Figure 8, the timing of events is added as a further attribute. Obviously, the length
of education is now replaced by the age at the start of the first job as the most
important attribute. Both events are expected to be closely connected in any life
course in which the labor market is entered at all. In comparison to the educational
system, however, job histories are less strictly regulated by institutional settings.

To obtain a more compact representation of rules that best discriminate be-
tween Austrians and Italians we apply the rule learning algorithm Ripper to the
same dataset. Again, we used a setting that favored simplicity over accuracy in
order to optimise comprehensibility. The resulting rule set is shown in Figure 7.
Its error rate is about 16.5%. One of the rules is the sequencing and synchronisa-
tion between leaving home and marriage. They are synchronised for 2,851 Italians
as compared to 592 Austrians, while leaving home precedes marriage for 3,476
Austrians versus 976 Italians. The fact that the rule algorithm chooses leaving
home and marriage as opposed to union and marriage (which was chosen as the
most important attribute in the decision tree algorithm) is not a contradiction. To
understand it, we need to recall how both algorithms are designed.

The decision tree chooses the attribute that best discriminates between Austri-
ans and ltalians for each representation of the attriSufée attribute union/marriage

Technically speaking, the algorithm determines the performance of each attribute as the average
performance across all representations of the attribute and then chooses the attribute that has the best
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was chosen because it discriminates best between Austrians and Italians indepen-
dently of whether both events are synchronised or not or neither event has taken
place. On the other hand, the rule learning algorithm takes single representations
of attributes (compared to average performance across all representations of one
attribute) as the criterion to decide on the best rule. Consequently, the result that
Austrians are best distinguished from Italians by their leaving home before mar-
riage does not imply that leaving home after marriage is as good a criterion for
discriminating between the two societies.

Besides the important role of synchronisation of events like leaving home, mar-
riage, and union formation, Italians also differ from Austrians in that more of them
have not yet (i.e. until the interview date) experienced either of these events. As the
second rule states, those who have not yet left home, not yet started a union, and
not yet had a child are more likely to be Italians. Related to this pattern, Italians
have often be termed as being the ’latest late’ as regards events that characterise the
transition to adulthood. Austrians experience many of these events at much earlier
ages, as is best represented by the last rule.

For the sake of completeness we have added the results of the rule-based al-
gorithm as applied to the data set where we exclude the timing of education as an
attribute (see Appendix A, Figure 9).

Though the models learned by the decision tree algorithm differ slightly from
those learned by the rule learning algorithm, the results of both also support the
proposition thatthe sequencing of events in the transition to adulthood is more
important than the timing and quantum of these events for discriminating between
Austrians and Italians.

5 Discussion

In this paper we applied techniques developed in machine learning for the analysis
of life course data from a comparative perspective. These techniques allow for a
high degree of flexibility in the use of data and for problem-specific representations
of the available information.

For example, in the transition to adulthood, the key role of the timing, sequenc-
ing, and quantum of events such as leaving home, union formation, marriage, birth
of the first child, completion of education, and start of the first job is acknowledged
from a theoretical point of view. To distinguish between the timing, sequencing,
and quantum of events we proposed a novel representation of life course data that
captures this information. We then applied machine learning techniques to event
data about the transition to adulthood from Austrian and Italian Fertility and Fam-
ily Surveys. More specifically, we built decision trees and rule sets that aimed to
discriminate between Austrian and lItalians in terms of characteristics that pertain
to the transition to adulthood.

average performance across all its representations.
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Our main theoretical result is that we have established the key role of the se-
guencing of events for distinguishing between Austrian and Italian life courses in
the transition to adulthood. Information on the timing of events could be regarded
as the next best group of features, while information on the quantum of events
turned out to be the leastimportant feature set. In terms of the sequencing of events,
our findings showed that the synchronisation between events such as leaving home
and first marriage and first marriage and union formation is the most important fea-
ture for distinguishing the transitional paths of Italian young people from those of
Austrians. Information on the timing of events was only of importance as it regards
the length of formal education and the age at the start of the first job and only in the
case that the algorithm needed to distinguish between Austrians and Italians along
more traditional life course patterns. Information on the quantum of events (i.e.,
whether an event has occurred) was mostly confined to highlighting a well-known
characteristic of Italian patterns in the transition to adulthood, namely, the fact that
Italians are often the ’latest late’ as regards events such as leaving home, union
formation, marriage, and birth of the first child. However, we should stress that
by focusing on the transition to adulthood and on non-repeatable events, we have
unavoidably underscored the importance of the quantum of events. We think that
in other applications the quantum may play a major role.

The adoption of the machine learning approach we proposed allows one to look
at life courses from a holistic perspective. This perspective becomes even more im-
portant in the case of comparative studies, i.e., if one tries to differentiate between
two groups of individuals. Moreover, the results of decision trees and rule sets
provide a non-technical audience with a clear representation of results. This is not
possible with the techniques currently in use, either because they do not start from
a holistic perspective or because they do not give results which are clearly inter-
pretable. We thus foresee many applications for the techniques discussed here in
life course research and more generally in demography and sociology. In general,
such techniques can be applied to various kinds of comparative research. Social
dynamics arising from the comparison of cohorts, and gender comparisons within
a society are also envisageable as potential research areas. The public availability
of software for these techniques is definitely a great advantage. Finally, the rep-
resentation of life course events in terms of timing, sequencing, and quantum we
have adopted can be regarded as a further novelty to come out of this paper. This
representation can possibly also be adopted in analyses using different techniques
based on other statistical models.

Disclaimer
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Appendix
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Figure 8: A decision tree applied to data on the transition to adulthood in Austria
and ltaly excluding the timing of education as an attribute. The numbers indicated
in each leaf are always ordered such that the first number refers to Austrians and

the second to Italians covered by this rule.
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I|F home= marriage
THEN ITA (592/2851)

IF home= n.o. AND child = n.o.
THEN ITA (529/1728)

| F union= marriageAND job > 22
THEN ITA (215/1419)

IF home< marriage
THEN AUT (3476/976)

IF home> marriageAND home= yes
THEN AUT (534/80)

IF job < 20 AND education= job AND job > 17
THEN AUT (824/57)

IF home> unionAND union< marriage
THEN AUT (458/45)

DEFAULT AUT (99/79)
Figure 9: Arule set describing the data on the transition to adulthood in Austria and
Italy excluding the timing of education as an attribute. The numbers indicated at

the end of each rule are always ordered such that the first number refers to Austrians
and the second to Italians covered by this rule.
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