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ABSTRACT

We present an extension of the Lee-Carter method of modeling mortality to examine
structural shifts in trajectories of mortality. Austrian data consisting of 53 years of
single-age mortality rates are subdivided into 30 24-year submatrices. Using singular
value decomposition, the submatrices are decomposed into three component
submatrices: 1) the multiple realizations of the index of mortality to which each
respective age-specific death rate is linearly related; 2) the average shape across
age of the log of mortality schedules; 3) the sensitivity of the log of mortality at each
age to variations in the elements of the index of mortality. We refer to these latter
submatrices to locate structural changes in mortality patterns. A comparison of the
observed and estimated life expectancy indicates that the extended Lee-Carter
method is superior to the original Lee-Carter method, particularly so for life
expectancies at higher ages. We conclude by projecting life expectancy up to 2050,
applying the Lee-Carter method to the whole time series (1947-1999) and comparing
it to an application of the Lee-Carter method to the latest subsample (1976-1999).

1. INTRODUCTION

The Lee-Carter method (Lee and Carter 1992) of modeling mortality allows one to
apply standard time series methods to forecast mortality. Because this method is
computationally simple to apply, its use has become very popular in the course of the
last decade for modeling and forecasting mortality patterns (Carter and Lee 1992,
Lee and Nault 1993, Tuljapurkar et al. 2000, Wilmoth 1998).

However, several authors (e.g. Lee and Miller 2000) have recently noted that the
assumption of a constant age shape of mortality – which is implicit in the original Lee-
Carter model – may be too rigid. As cited in Lee and Miller (2000), Horiuchi and
Wilmoth (1995) present evidence for several countries that mortality has been
declining more rapidly at higher ages than at lower ages during recent decades. In
                                                          
1 We would like to thank Alexander Hanika from Statistics Austria for providing the data.
2 The views expressed in this paper are the author’s own views and do not necessarily represent those
of the Max Planck Institute for Demographic Research.
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this paper we present an extension of the original Lee-Carter method that takes into
account the changing age pattern of mortality. Our method can be applied to locate
structural changes in the historical pattern of mortality that could ultimately be used to
determine the time horizon of past mortality rates on which forecasts should be
based.

For this heuristic examination, we first apply the Lee-Carter method to time series
mortality rates by single years of age for Austria from 1947 to 1999. These data are
ideal for this examination because they show what is possibly a structural shift in
mortality beginning around 1968. We attempt to attribute this shift to significant gains
in life expectancy, e0, derived from apparent gains in the health of the older
population from that time forward. We then apply the Lee-Carter method to
successive subsamples of equal length from the original time series of mortality
rates. A comparison of the resulting age shape of mortality for the whole time series
with the subsequent subsamples proves that Horiuchi and Wilmoth’s assertion is true
for Austria as well. We demonstrate that the extended Lee-Carter method also
improves the fit for the observed life expectancy and may essentially influence the
predicted gains in life expectancy.

This paper is divided into several sections. In Section 2, we present some historical
background on Austrian mortality patterns to establish the setting for our research.
Section 3 describes the basic nonlinear demographic model of the Lee-Carter
method and the procedures for decomposing this model. Section 4 extends the
decomposition of the Lee-Carter model to include time-varying age and time patterns
of mortality to explore the sensitivity of these components to structural shifts in the
data. In Section 5 we evaluate the fit of the estimated life expectancy between the
original and the extended Lee-Carter approach. Section 6 presents a forecast of life
expectancy to 2050 based on the whole time series 1947-1999 (original Lee-Carter
approach) which we contrast with a forecast based on the last subsample from 1976-
1999. Finally, in Section 7, we summarize our research and offer avenues for
advancing this research endeavor.

2. BACKGROUND

Along with many industrialized western countries, Austria has seen a steady decline
in mortality since the late 1940s. But the rate of decline has not been monotonic as
indicated by a closer investigation of the life expectancy at birth for males and
females (Figure 1). After a sharp decline in mortality in the late 1940s and the 1950s,
it seemed that this trend came to an end in the 1960s. However, Austria experienced
along with many industrialized western countries a further significant rise in life
expectancy during the 1970s and 1980s.

In the 1970s a third of the gains in additional years of life were attributable to the
decline in infant mortality, while it is declines in mortality among the elderly that have
shaped the overall mortality decline during the last two decades. Parallel to the
increase in life expectancy, the major causes of death shifted from infectious
diseases to chronic-degenerative diseases and neoplasm. The main causes of death
are now diseases of the circulatory system, neoplasms, and diseases of the digestive
system. Moreover, the risk of death from several of these diseases has shifted to
older ages in the course of the last decade. Olshansky and Ault (1986) characterized
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this development as ‘the stage of delayed degenerative diseases’. Evidence for a
delay in deaths from specific causes of death in Austria (e.g. malignant neoplasm of
the digestive organs and peritoneum, heart diseases without acute myocardial
infarction, etc.) is summarized in Kytir and Prskawetz (1995).

Figure 1: Life expectancy at birth for female and male populations in Austria,
1947-1999.

3. A STOCHASTIC NONLINEAR DEMOGRAPHIC MODEL

The components of the basic demographic model introduced by Lee and Carter
(1992) are depicted in Figure 2 for males and females respectively. The model is
designed to derive a single index of mortality kt (Figure 2.a) to which the log of each
age-specific death rate is linearly related.

The model is of the form:

)ebkaexp(m t,xxtxt,x ++=  or log transformed, (1)

t,xxtxt,x ebka)mln( ++= (2)

with t = 1947, …, 1999 and x = 0, …, 95+

Here mx,t is the central death rate for age x at mortality level kt, and ax (Figure 2b) is
the average shape across age of the log of the mortality schedule. The variable bx
(Figure 2c) reflects the sensitivity of the log of mortality at age x to variations in the
parameter kt. Linearization through the log transformation in (2) facilitates the
extraction of kt using singular value decomposition (SVD).

For any value of kt, the fitted model for (1) defines a set of central death rates which
can be used to construct a life table. It is a mathematical implication of the model
that, if kt changes linearly with time, then each age-specific rate changes at a
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constant exponential rate, where the constants vary by age. This relationship is
evident in the transformation from equation (2) back to equation (1). The shape of the
bx profile tells us which rates decline rapidly and which rates decline slowly over time.

The error term, ex,t, with mean zero and variance se
2, reflects particular age-specific

historical influences not captured in the model.

There are many ways to estimate ax, bx, and kt. There have been three approaches
that have been experimented with so far and all use singular value decomposition
(SVD). Lee and Carter (1992) introduce a two stage process, while Wilmoth (1993)
demonstrates a weighted SVD technique and a separate maximum likelihood
method. There are only marginal differences among all four schemes. In this study
we use Wilmoth’s weighted SVD technique.3 Similar to Wilmoth (1993), we apply the

normalizing constraint on bx: ∑ =
x

2
x 1b  and the further necessary condition for full

model identification 0k
t

t =∑ .

As evident in Figure 2.a there is a clear downward trend in mortality across time,
which resembles the non-monotonic pattern already observed in Figure 1: a sharp
decline during the late 1940s and the 1950s, leveling off at the end of the 60s, and a
further significant decline in the 1970s and 1980s. By definition, Figure 2.b plots the
mean of the log mortality rates across time. The sensitivity of the log of mortality at
age x to variations in the elements of kt (Figure 2.c) is clear evidence of the advances
in infant mortality during the early periods of the time series.

4. INVESTIGATING FOR STRUCTURAL SHIFTS IN THE DATA

In much of the early research on age-structured populations one assumed that these
populations are stable or quasi-stable. Lee and Carter (1992) expand on the view of
variable rates. Yet, they hold to the assumption of demographic stability. Once
trajectories are established for age-specific death rates or life expectancies, it is
assumed that they progress at fixed or uniformly changing rates toward some
asymptotes. Here, however, we entertain the possibility of variances from stability,
and that structural shifts or perturbations may have a significant impact on the
outcome of a projection.

4.a. Structural Shifts

In the following we explore the stochastic behavior of the three components of (2).
Thus, there are two age and time varying components, ax,t and bx,t, and one time
varying component, kt. The decomposition of mx, t is performed as described below.
We look for what may be structural shifts in any of the components over time. Doing
so allows us to come up with a stochastically richer rendition of the Lee-Carter model.
We thus look for structural shifts, that is, discontinuities within the components. The
discontinuities need not be abrupt, but they must be sufficiently abnormal to suggest
that something of some behavioral significance must have occurred to destabilize the
historical trajectory of the component. It is these discontinuities that we hope to

                                                          
3 We wish to thank Carolyn Hart and John R. Wilmoth, who made their Splus code of the weighted
least squares estimate available to us.



5

Figure 2: Decomposition of ln(mx,t) for 1947-1999, female and male

time series of kt
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detect in this deeper analysis, which may ultimately provide more sensitive forecasts
of mortality.

4.b. Age and Time Varying Decomposition of mx,t : the Extended Lee-Carter
Model

To extend the analysis so as to encompass the three time-varying components,
equations (1) and (2) need to be reformulated. In matrix notation, they now become:

)EBKAexp(M
sss t,xs,xts,xt,x ++=  and (3)

sss t,xs,xts,xt,x EBKA)Mln( ++= (4)

with s = 1, …, 30; t1 = 1947-70, …, t30 = 1976-99 and x = 0, …, 95+

where the components t1, …, t30 represent blocks of 24 years sequentially sampled
from the entire observed matrix of age-specific death rates mx,t. Here, s,xt BK

s
 is

decomposed using SVD but in a manner different from that of Section 3.
We sequentially sample 30 24-year submatrices of age-specific mortality rates from
the total 53-year age-specific mortality rates for Austria. Each of the 30 submatrices
as indicated by the subscript s is decomposed so as to yield its own set of ax, bx, and

skt . The elements of Bx,s for selected values of s (together with the bx schedule for
the whole time series) are shown in Figures 3.a and 3.b for females and males
respectively, and their corresponding contour plots (Andreev 1999) for all 30
subsamples s are plotted in Figures 4a and 4b. (Since the elements of Ax,s and 

stK

are much more stable across the subsamples, we concentrate exclusively on the
schedule of the Bx,s in this paper.)

From Figures 3.a. and 3.b. it is evident that the age pattern of mortality decline has
changed considerably across our time of observation. A comparison of the bx

schedule for the first (1947-1970) and the last (1976-1999) subsample shows a more
stable pattern for the latter period for ages above 15 (cf. Lee and Miller 2000 for a
similar conclusion). Applying the Lee-Carter method to the whole time series clearly
averages out the distinct patterns at adult and higher ages exhibited in the two
subsamples.

Even more intuitive is the representation of the whole Bx,s schedule by means of
contour plots as shown in Figures 4.a and 4.b. The cold (blue) areas indicate little
change in mortality while the hot (orange and brown) regions indicate ages where
mortality rates have declined most. These figures clearly illustrate the structural shifts
in old age mortality since the 1970s, as shown by the shrinkage of the blue area in
the upper age groups and the spread of the “hot” region into older ages. In the 1940s
and up to the 1970s mortality improvements were mainly concentrated in the young
and middle age groups, as is clearly visible in the hot regions around age 30 during
these periods. The fact that we observe very high sensitivity at very low ages also in
the latter periods might be due to the small numbers of people in these age groups,
which means that even a modest mortality decline will have a pronounced effect.
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Figure 3.a: bx schedule for the entire time series 1947-1999 and two selected
subsamples 1947-1970 and 1976-1999, female

Figure 3.b: bx schedule for the entire time series 1947-1999 and two selected
subsamples 1947-1970 and 1976-1999, male
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Figure 4a: Contour plot of Bx,s schedule, female

Figure 4b: Contour plot of Bx,s schedule, male
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5. ESTIMATES OF LIFE EXPECTANCY AT BIRTH AND AGE 60 USING THE
EXTENDED AND THE ORIGINAL LEE-CARTER METHOD

To evaluate the goodness of fit of the extended versus the original Lee-Carter
method we refer to the difference between the observed and estimated life
expectancy at various ages for both methods. Here we present only the results for life
expectancy at birth (e0) and at age 60 (e60) (further results can be obtained by the
authors on request). We have opted to choose the difference between observed and
estimated life expectancy as a measure of the goodness of fit since the prediction of
life expectancy is central to forecasting mortality rates. The past fit may indicate the
best time horizon on which to base future forecasts.

Strong support for the extended Lee-Carter method of modeling mortality rates based
on subsamples of the original time series is shown in Figure 5 and Figure 6.

Applying the Lee-Carter method to the whole time series 1947-1999 (cf. Figures 5.a
and 5.b), we first over-estimate e0 up to the beginning of the 1950s for both males
and females and then consistently underestimate it up to 1999 for males and to the
late 1980s for females. From this point onward we slightly over-estimate e0 once
again. Roughly speaking, the failure to estimate e0 correctly is in the range of –0.4 up
to +0.4 years. Most interestingly, by applying the Lee-Carter method to subsamples
of the original time series the fit essentially improves for all subsamples in the case of
females (Figure 5.a). For males the improvement is only visible for the latter
subsamples (Figure 5.b). These results may indicate that the structural breaks in the
mortality patterns of females and males may require a different time period of
subsamples for each gender. This is something that definitely needs to be further
explored in future research. As evident in Figure 5.a., the difference between
observed and estimated e0 can be reduced by almost 0.3 years if one applies the
Lee-Carter method to subsamples of the original time series.

An unambiguous improvement in the difference between observed and estimated life
expectancy at higher ages, e.g. age 60, is clearly evident for both females and males
from the results in Figure 6. Note that the shape of the bold line, which arises by
applying the Lee-Carter method to the whole time series, is almost a mirror image of
the corresponding line in Figure 5. The original Lee-Carter method underestimates
e60 up to the late 1950s. It then over-estimates e60 up to the early to mid-1980s for
females (males) and underestimates e60 thereafter. It seems that the reduction in
mortality at adult and middle ages as evidenced in Figures 3.a. and 3.b for the
subsample 1947-1970 may have been attributed to older ages when we applied the
Lee-Carter method to the whole time series. Similarly the clear reduction in old age
mortality as evidenced for the subsample 1976-1999 in Figure 3.a. and 3.b may have
been underestimated when we applied the Lee-Carter method to the whole time
series. As evident in Figures 6.a and 6.b, life expectancy at older ages can be
modeled more accurately, particularly for the last realization (1976-1999). Hence it is
this last subsample on which we will base our forecasts.
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Figure 5.a: Difference in observed and estimated life expectancy at birth for
estimates based on the time series 1947-1999 and estimates based on selected
subsamples, female

Figure 5.b: Difference in observed and estimated life expectancy at birth for
estimates based on the time series 1947-1999 and estimates based on selected
subsamples, male
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Figure 6.a: Difference in observed and estimated life expectancy at age 60 for
estimates based on the time series 1947-1999 and estimates based on selected
subsamples, female

Figure 6.b: Difference in observed and estimated life expectancy at age 60 for
estimates based on the time series 1947-1999 and estimates based on selected
subsamples, male
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6. TIME-SERIES MODELING AND FORECASTING

We employ the Box-Jenkins (1976) techniques for modeling and forecasting the
demographic components of the Lee-Carter model. First, we model the entire 53-year
series of kt from the original Lee-Carter decomposition with fixed axs and bxs. This
estimation provides a benchmark series with which to compare forecasts based on
the latest subsample (1976-1999). The estimated time-series model for kt

operationally has the formulation:

noise.cnstkk 1tt +−= − . (5)

This equation represents a random walk with drift (cnst). Here noise stands for the
innovations, which are assumed to be white noise and will not be considered here.
This equation is forecasted 51 years ahead to 2050 (similar to Bell 1997, p. 293ff, all
forecasts are bias adjusted). These forecasts are recombined with the constants axs
and bxs according to (1) to obtain the forecasted mx,ts. The forecasted death rates are
used to extract life table functions into the future. The most salient life table function
is e0, life expectancy at birth (Figures 7a. and 7.b). This process is repeated for a
truncated realization of the entire time series ranging from 1976 to 1999; i.e., the
latest subsample from the extended Lee-Carter method (Figures 8a. and 8.b).

Figures 7.a and 7.b plot the observed life expectancy at birth up to 1999 together with
its forecast (bold line) for females and males respectively. The faded lines indicate
the 95% confidence intervals while the dashed line represents the latest official
forecasts from Statistics Austria (Hanika 2000). Note that the official forecast lies
within the confidence interval over the entire forecast horizon and is almost identical
to the results obtained by the Lee-Carter method for males. According to these
figures, life expectancy for females is forecasted to increase from about 81 years in
1999 to 88 years in 2050. Male life expectancy will increase from 75 years to 82
years.

These projected gains in life expectancy may, however, be too conservative, as
Figure 8 suggests. Here we plot the forecasts obtained from Figure 7 (bold lines)
together with forecasts obtained by applying the Lee-Carter method to the last
subsample only, the period from 1976-1999 (dashed lines). In both cases we also
add the 95% confidence interval (solid faded lines and dashed fade lines
respectively). For females the difference is only about 1.3 years in 2050, and the
forecast based on the subsample 1976-1999 lies within the confidence interval of the
forecast based on the whole time series, as can be seen in Figure 8.a. For men,
however, the difference in the predicted life expectancy at birth in 2050 in the two
methods is about 3.5 years. Moreover the forecast based on the most recent
subsample leaves the 95% confidence interval of the more conservative forecast
(which is based on the whole time series) already after the first decade of the 21st

century.

We refrain from drawing any definite conclusions about the optimal period on which
to base forecasts for future life expectancy at birth. However, our simulations should
be taken as evidence that the choice of the base period may not be negligible –
particularly in the case of the data on Austrian males we use here.
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Figure 7.a: Forecasts of life expectancy at birth based on the time series 1947-1999,
female

Remark: The dashed line indicates the latest forecast of Statistics Austria and the faded lines indicate
the 95% confidence interval for the Lee-Carter forecast (bold line).

Figure 7.b: Forecasts of life expectancy at birth based on the time series 1947-1999,
male

Remark: The dashed line indicates the latest forecast of Statistics Austria and the faded lines indicate
the 95% confidence interval for the Lee-Carter forecast (bold line).
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Figure 8.a: Forecasts of life expectancy at birth based on the time series 1947-1999
and, alternatively, on the time series 1976-1999, female

Remark: The solid bold line forecasts based on the time series 1947-99 and the dashed bold line
forecasts based on the time series 1976-99 are shown with their corresponding 95% confidence
interval.

Figure 8.b: Forecasts of life expectancy at birth based on the time series 1947-1999
and, alternatively, on the time series 1976-1999, male

Remark: The solid bold line forecasts based on the time series 1947-99 and the dashed bold line
forecasts based on the time series 1976-99 are shown with their corresponding 95% confidence
interval.
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7. CONCLUSIONS

We have attempted to show that there is considerably more dynamic behavior in the
components of the Lee-Carter model of mortality than is apparent in the single
distributions of axs, bxs, and kts.  Using the expanded Lee-Carter method, we capture
more dimensionality in these components by deriving the matrix arrays Ax,s, Bx,s, and

stK  emanating from 30 24-year submatrices in the data. Since a first investigation of

these components shows Ax,s and 
stK  to be relatively stable, the focus here was on

the components of Bx,s. Testing various combinations of Ax,s, Bx,s, and 
stK  showed

that the last realization yielded the best estimate of the observed series of e0. This
test indicates that selectivity is important in discerning the best realization for
forecasting mortality. It may be that the last realization is always the best jump-off
series for forecasting, though this investigation does not offer proof of this.

This is an initial investigation into the attributes of an expanded Lee-Carter method
used for estimating and forecasting mortality. Extensions call for greater explorations
of Ax,s and 

stK  matrices. Although they appear to be relatively stable, they may have

dynamic characteristics that elucidate mortality patterns more adequately. These
techniques need to be applied to other countries – both to countries with mortality
histories that are apparently stable and to countries where they appear to be
unstable. This should reveal the viability and robustness of this approach.
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