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I. INTRODUCTION

The world economy has become more closely integrated in recent years due to
increasing trade and financial flows across countries. This has spurred interest in the question
of how the ongoing phenomenon of “globalization” has affected the transmission and
propagation of business cycle fluctuations across national borders. An important question in
this context is whether a substantial fraction of economic fluctuations are country-specific or
if there exists a “world business cycle,” which might be defined as fluctuations that are
common for all countries. More generally, the comovement of macroeconomic aggregates
across different countries has become a topic of increasing interest in both academic and
policy circles.

These issues have implications in a number of dimensions. From a modeling
perspective, the relative importance of country-specific versus common cross-country
fluctuations has a bearing on the relevance of different classes of business cycle models. For
instance, real business cycle models, where technology shocks are posited to be the main
determinant of economic fluctuations, suggest that common international shocks (which
could be industry-specific) are relatively more important than country-specific shocks. From
a policy perspective, if business cycle fluctuations were highly positively correlated across
all countries, the external trade sector would be unlikely to play a significant role in
dampening fluctuations. Domestic policies aimed at affecting the real exchange rate and
thereby attempting to boost net exports in the short run would then tend to have limited
impact. The synchronization of business cycles across countries also has important
implications for short-run international policy coordination and for assessing the feasibility
of monetary unions. Therefore, identifying and analyzing the common component of
international economic fluctuations is relevant from a number of different perspectives.

The objective of this paper is to estimate the common component in international
economic fluctuations and to examine its properties. One strand of related literature has
attempted to shed light on common fluctuations by looking at bivariate correlations of
business cycle indicators and examining changes in these correlations over different time
periods (see, e.g., Baxter and Stockman [1989] and Backus and Kehoe [1992]). Another
strand of literature has focussed on using time series models to analyze the sources of
economic fluctuations. Previous literature in this latter area has focussed on trying to
separately identify aggregate, country-specific and industry-specific shocks. For instance,
Stockman [1988] and Bayoumi and Prasad [1997] use an error components methodology
while Altonji and Ham [1990], Stock and Watson [1989, 1993], Forni and Reichlin [1996],
Norrbin and Schlagenhauf [1996] and Gregory ef al [1997] use dynamic factor models. A
key issue in this literature is the propagation mechanism that allows for lagged feedback
effects across various shocks. Although dynamic factor models are able to allow for such
feedback effects, this comes at the cost of having to estimate a large number of parameters
and restricting the covariance properties of these shocks. In addition, the procedure followed
in most of the literature implicitly weights all units of the disaggregated data equally in all
periods.



One method for relaxing the equal-weights assumption is to weight by some measure
of each country’s relative size in total world output. Following this approach, we first
examine a measure of the common component of international fluctuations obtained by using
a fixed PPP-adjusted weight to aggregate seasonally adjusted industrial production growth
rates. The correlations between industrial production growth in each country and this
common component are strongly positive for most countries, supporting the notion of a
“world business cycle.” The fixed-weight measure of the common component is, however,
inadequate in many respects. One reason is that the relative economic size of countries
changes over time and the weights should reflect this dynamic nature. Another is that
countries experience idiosyncratic shocks; these shocks, by definition, should not affect the
common component. Fixed weights do not allow for different types of shocks in different
periods; all shocks are presumed to have the same influence.

To address these limitations, in this paper we propose a new methodology that
incorporates a time-varying weighting scheme for constructing the common component.? The
modeling strategy that we employ involves estimating univariate models of time-varying
conditional variances for industrial production growth fluctuations in each country. The time-
varying weights for each country are then derived as a function of the estimated conditional
variances.

The weighting scheme is motivated by two empirical regularities that are documented
in this paper. The first is the negative relationship between country size and the average
volatility of industrial production growth rates. The second feature is the presence of
conditional heteroskedasticity in monthly industrial production growth rates for all countries
in the sample. We use these two features to determine time-varying weights by noting that
each country’s volatility relative to that of other countries provides a measure of the degree
of idiosyncrasy in the observed shocks. The weighting scheme developed in this paper
implicitly assigns a lower weight to a country when it is subject to a large country-specific
shock but leaves the weights unchanged if a common shock occurs. The extent to which the
methodology downweights outliers provides a way of distinguishing between idiosyncratic
and common shocks.

The objective of the methodology developed in this paper is to identify the common
component rather than to distinguish among different sources of shocks (global or country-
specific). Hence, the methodology is designed to implicitly capture the effects of the dynamic
propagation of shocks across countries but without placing restrictions on the propagation of
shocks across countries, unlike in the case of dynamic factor models that require restrictions
on the feedback effects among different shocks. However, as is the case with other
techniques, the approach in this paper does not permit us to distinguish between global

*The notion of aggregating using time-varying weights has been used in models of
combining forecasts; for example, Deutsch, Granger, and Terésvirta [1994] use rolling
regressions to estimate time-varying weights. Also see Diebold and Pauly [1990].



shocks and shocks that might initially appear to be country-specific but that eventually
propagate to other countries through trade or other links. Since we are interested in
identifying the common component of international fluctuations, irrespective of the sources
of shocks to this common component, this distinction is not important for our purposes.

Another important aspect of economic fluctuations that has gained prominence
recently is the importance of seasonal fluctuations and the relationship between seasonal and
business cycle fluctuations.’ The methodology developed in this paper can, in principle,
eliminate the effects of idiosyncratic seasonal fluctuations on the common component. On
the other hand, common seasonal fluctuations and the part of seasonal variation correlated
with the business cycle do enter into the construction of the common component. Thus, the
aggregation procedure allows for a unified treatment of seasonal and business cycle
fluctuations.

The paper proceeds as follows. Section II motivates the use of time-varying weights
in constructing the common component and describes the econometric procedure for
estimation of these weights. Section III examines the properties of the estimated time-varying
weights and compares the properties of the common component constructed using these
weights to that of a benchmark fixed-weight common component. Section I'V extends the
results in two ways: (a) by investigating potential structural change in our specification
between the Bretton Woods and post-Bretton Woods periods, and (b) by estimating a
European common component. The sensitivity of the aggregation procedure to the treatment
of deterministic seasonal effects is also examined. Section V concludes.

II. AGGREGATION USING TIME-VARYING WEIGHTS

This section first sketches a time series model that clarifies the identification issues
involved in measuring the common component of fluctuations across countries. The
methodology introduced here is more broadly applicable to situations where construction of
an aggregate from a collection of individual time-series is desirable, but we will focus on the
details in the context of fluctuations in growth. Evidence is then presented on some empirical
regularities that could be exploited to devise a procedure for constructing time-varying
weights. The econometric procedure used to derive these weights and construct the resulting
common component is then described.

Our choice of aggregation methodology is motivated by three considerations. First, an
ideal weighting scheme should be capable of distinguishing between country-specific and

*See, e.g., Beaulieu and Miron [1992], Beaulieu, Mackie-Mason, and Miron [1992], Canova
and Ghysels [1994], Cecchetti and Kashyap [1996], and Cecchetti, Kashyap, and Wilcox
[1997].



common fluctuations. In principle, the weights chosen for constructing the aggregate
measure should reflect fluctuations only in the common components in each series. The
relative weight of a particular country should decrease when that country experiences a
largely idiosyncratic shock. If, on the other hand, a country's shock is of the common
component type, its relative weight should remain unchanged. If it were possible to
separately identify the two types of shocks for each country, we could compute time-varying
weights which took into account both the relative across-country weight and the relative
within-country weight (between common and idiosyncratic shocks). Because these are not
observable, however, it is necessary to determine a mechanism for distinguishing between
these two effects without having to impose unwieldy restrictions.

Second, another important consideration in estimating the common component of
international fluctuations is to allow for the propagation of shocks across countries. Error
component models typically ignore this issue while dynamic factor models attempt to capture
this phenomenon by allowing for feedback effects across country-specific and aggregate
fluctuations. This comes at the cost, however, of having to estimate a large number of
parameters and having to impose stringent restrictions on the covariance properties of the
shocks. In addition, the structure of the transmission mechanism for these shocks is generally
assumed to remain unchanged over time. An alternative approach is the common trends and
common cycles method developed in Engle and Kozicki [1993], although this methodology
requires restrictions on the factor loadings of the common cycles in order to allow for
additional idiosyncratic behavior.*

Third, monthly industrial production data typically display a high degree of
seasonality, an aspect that could potentially complicate econometric work. We prefer to
remain agnostic on the appropriate characterization of seasonal variation in the data. We
recognize that patterns of seasonal variation could change over time. In addition, as noted by
Beaulieu, MacKie-Mason, and Miron [1992], seasonal cycles may be correlated with
business cycles. In a similar vein, Cecchetti and Kashyap [1996] and Cecchetti, Kashyap, and
Wilcox [1997] have documented that, in the OECD economies, patterns of seasonal
fluctuations in industrial production vary with the state of the business cycle. Furthermore,
care must be taken not to remove a potential common seasonal component; Engle and
Hylleberg [1996], for instance, find evidence of common seasonal patterns in unemployment
among some OECD countries. For these reasons, rather than attempting to remove the entire
seasonal component, we are interested in eliminating seasonality only to the extent that it
interferes with our ability to measure the common component of fluctuations.

The above discussion suggests a role for time-varying weights in the construction of a
common component. In what follows, we propose a methodology for constructing these
time-varying weights.

*Lippi and Reichlin [1994] have a useful discussion of alternative concepts of co-movements
of variables in the short run and the long run when different trend-cycle decompositions are
considered.



A. A Basic Model

Consider the following time-series representation for output growth:

Vi =t +PL)e, +> v, (Le, +1(L)e, (1)

J#i

where y, indicates the growth rate of industrial production in country 7 at time £, y,is a
country specific mean, e, represents a country-specific shock to country 7, e, represents a

country-specific shock to country j, and e; is a global shock. The lag polynomials {3, y;, and 7
capture the propagation, within each country, of the different types of shocks. Distinguishing
between these shocks in a reduced-form framework is clearly a difficult task, especially if 3,
¥;, and 1 differ across countries.

Error component models typically impose an assumption of orthogonality between
country-specific shocks and global shocks while dynamic factor models make a similar
assumption but also allow for dynamic effects of these shocks. In either case, e; and e,
cannot be identified separately except under very restrictive assumptions about the
propagation structure. Further, there is no reason to believe that the lag polynomials
governing the propagation of shocks are the same across all countries or that these are
constant over time.

We take a different approach since our aim is not to identify the shocks themselves
but to construct a measure of the common component that could include global shocks as
well as country-specific shocks that eventually propagate to all, or a subset of, other
countries. The approach, described in greater detail in subsection C below, involves the
construction of a weighted average measure of high frequency output fluctuations in each
country, where the weights are allowed to vary over time. To do this, we first measure the
conditional volatility of output growth for each country. Second, we interpret a single
country’s specific increase in conditional volatility as arising from a country-specific shock
and, consequently, reduce the weight attributed to such a fluctuation when computing the
common component. Thus, the methodology in this paper does not require strong
assumptions about the correlation structure across different types of shocks or about the
propagation mechanisms for different shocks.

One issue that arises here is whether taking an average is in fact an appropriate
approach for constructing the common component. We discuss the intuition here and provide
a more formal illustrative example in Technical Appendix A. Consider the case where both
e;s and e;; have zero mean and are drawn from distributions with similar second moments but
are serially and mutually uncorrelated for all 7, j. Also assume, for the moment, that the lag
polynomials in equation (1) are all equal to unity. In this case, it is fairly easy to see that a
simple average would in fact yield the common component e,, if the sample contained a
sufficiently large number of countries, so that the sum of e;; and e;; over all these countries
was equal to their respective unconditional means of zero.



If each country’s shocks had different variances or were correlated, a simple average
weighting scheme would not necessarily be optimal. The optimal weights would then be
inversely related to the unconditional volatility of these shocks. The intuition behind this is
similar to why, in a regression, GLS is efficient relative to OLS when the errors are
heteroskedastic. Similarly, if the coefficients in the lag polynomial 1} were not equal to unity
then a simple average of the y;; would not yield e,, while a weighted average of y;;, where the
weights were inversely related to these coefficients, would.

In economic terms, it is plausible that country-specific shocks hitting larger countries
are more likely to be eventually propagated to smaller countries than vice versa. Similarly,
global shocks would tend to have a larger impact on smaller economies, especially since
smaller industrial economies are generally more open to international trade than larger
industrial economies. Therefore, we would expect the coefficients [ and y; to be inversely
related to some measure of country size. In fact, as discussed below, we find a strong
negative relationship between country size and the volatility of industrial production growth
and exploit this empirical relationship in developing our methodology.

B. Some Stylized Facts

We begin by documenting the relationship between the fixed OECD weights (W),
which are interpretable as a measure of relative country size, and the standard deviations of
the individual industrial production growth rates (std)).” This relationship is summarized in
the following regression (standard errors are in parentheses):

std, =0.059 — 0014, R*>=0.25

(.0064) (.0006) @

There is clearly a strong negative relationship between country size and volatility in
industrial production growth rates.” This result is consistent with the view that larger

The OECD weights are derived from gross domestic product originating in the industrial
sector and the GDP purchasing power parity for 1990.

S Although the explanatory power of this regression is not large, it is in fact rather striking
since the estimated relationship is an unconditional one that does not control for any other
exogenous factors. The results were similar when we excluded the United States and/or other
outliers such as Luxembourg. We obtained virtually identical results using 1985 OECD
weights (earlier weights were not available). In related work, we have also examined this
relationship for U.S. states using annual real gross state product over the period 1977-92. We
find a similar, although less strong, negative relationship between the standard deviation of
annual gross state product and relative state size. Head [1995] documents a similar negative
relationship between country size and the variance of real GDP.



economies tend to be more diversified, thereby tending to have lower aggregate volatility,
and are also less affected by external shocks emanating from other economies.” The
methodology developed in this paper is motivated by this negative cross-sectional
relationship between country size and business cycle volatility. The above observation also
suggests, however, that if volatility in individual industrial production growth rates were
constant over time, the use of fixed weights (that are related to country size, such as the
OECD weights) might be justified.

We therefore investigate whether the individual industrial production growth series
display evidence of time-varying volatility, in particular, conditional heteroskedasticity; such
evidence would motivate the need for time-varying weights. One way to test for this is to use
the Box-Pierce (-statistic to test for autocorrelation in the squared residuals from a
regression of industrial production growth rates on a constant and twelve lags. Results from
the computation of this statistic are given in the last column of Appendix Table A1; for all
countries, we reject the null hypothesis of no autocorrelation (conditional homoskedasticity
of the squared residuals) in favor of the alternative. In all cases, autocorrelations up to order
12 were used for the computation of the statistic; under the null hypothesis, this is distributed
as a x°(12) random variable. The corresponding 1 percent critical value is 26.2.

C. The Methodology for Constructing Time-Varying Weights

Since all series display evidence of conditional heteroskedasticity, we estimate
univariate GARCH(1,1) models for each series and use the predicted values of the
conditional variance to construct time-varying weights for the aggregate series. The GARCH
model (developed by Bollerslev [1986]) is a variant of the autoregressive conditional
heteroskedasticity (ARCH) model introduced in Engle [1982]. The GARCH(1,1) model
expresses the conditional variance as a function of lagged squared residuals and past
conditional variance. We select this model because it has been shown empirically to capture
the volatility dynamics in a wide variety of data and because quasi-maximum likelihood
estimators of this model are consistent and asymptotically normal (Lumsdaine [1996]). The
precise specification, for each country i, is as follows:

Vi =C; t &y, gitIIt—l ~N(0,h,), (3a)

hit =W, + aigizt—l + Bihs (3b)
where y; represents industrial production growth in country 7 at time #, ¢; is a country-specific
mean, and /; denotes information available at time 7. The parameters w;, &, and [3; are

constrained to be positive; the likelihood is also penalized to ensure that o + P <1, a
constraint that never binds in the estimation. In addition, the unconditional mean and

"Gerlach [1998] makes a similar observation.
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variance of country #’s industrial production growth rate are chosen as startin§ values for ¢;
and w;, respectively, and the initial value of the conditional variance, Ay, is 1.

We estimate model (3) and compute I;i, for each series, i = 1,...,17. Based on the

stylized fact summarized in equation (2), 4"/* can then be interpreted as a time-varying

measure of the contribution of the fluctuations in a particular country to fluctuations in the
international common component. Alternatively, we could use factor analysis to decompose
the conditional variance into the sum of a common component conditional variance and an
idiosyncratic component. This approach also requires restrictive orthogonality assumptions.
Instead, we use the conditional variance for a given country relative to the average across
countries as a measure of the idiosyncratic variance. Based on the empirical motivation given
earlier for our weighting scheme, the time-varying weights W, are then related to the inverse
of the estimated conditional standard deviations and are expressed as a fraction of the total
weight, so that

1

17 1
Ron 22 @

W, =

Note that 4+ is in the information set /. The aggregate series representing the common
component of international fluctuations is then constructed as

17
ZtG ZZVVityit' (%)
i=1

The key assumption underlying our methodology is that the relative conditional
standard deviation is a measure of the degree of commonality among fluctuations shared
across countries. This differs from the assumptions underlying factor models and error
components models (which assume orthogonality between the common and idiosyncratic
components). In this context, it is worth re-emphasizing that our objective is to estimate the
common component in fluctuations rather than to identify a global “shock” that is orthogonal
to all country-specific shocks. Technical Appendix A presents a simple and highly stylized

*The above parameter restrictions are standard in the estimation of GARCH models. Given
these restrictions, as long as the initial value of Ay is assumed to be drawn from the stationary
distribution, dependence on this initial value diminishes exponentially. None of the results
reported below were sensitive to the choice of starting values.
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illustrative example that provides further motivation for the methodology used here to
construct time-varying weights.’

In constructing the common component using time-varying weights, we have not
specified the transmission mechanism between fluctuations in the aggregate series and in
individual countries. We interpret country-specific increases in conditional volatility as
reflecting country-specific fluctuations. Thus, holding other shocks constant, a shock that hits
only one country would increase that country’s conditional volatility alone. This would result
in a decline in the weight attributed to that country in constructing the common component
for that period. If the shock propagated to other countries over time, however, the conditional
volatility of fluctuations in other countries would increase, and the weights would then
depend on how widely and over what time horizon the shock was propagated across
countries. Thus, the methodology is capable of accounting for the propagation of shocks
across countries without imposing any structure on the dynamics of this propagation.'

An illustrative numerical example of how the weights adjust to capture the
propagation of shocks is presented in Technical Appendix B. It is also important to note that
a more restrictive time series model such as an ARCH(1) specification could capture
contemporaneous transmission but would not allow for the dynamic propagation of shocks.
In contrast, the GARCH model provides a flexible functional form capable of capturing
propagation dynamics and allows for persistence in the weights via the coefficient f§ in
equation (3).

Further, since we use conditional volatilities in constructing these weights, positive
and negative shocks that are specific to a particular country are treated symmetrically since
both these shocks would increase country-specific conditional volatility, thereby resulting in
a lower weight for that country in the construction of the common component."!

’Forni and Reichlin [1996] use a dynamic factor approach and show that the optimal weights
in such a framework are the eigenvalues corresponding to the maximum eigenvector. This
fixed-weight approach implicitly assumes that the variance of the idiosyncratic component is
a constant proportion of the variance of the total. Even with “optimal weights,” however,
their approach does not allow these relationships to change over time.

°An alternative approach would be to estimate a multivariate GARCH model. To make such
a model more tractable would, however, require additional assumptions on the conditional
correlations of the shocks (see, e.g., Diebold and Nerlove [1989], and Bollerslev [1990]).

'We note that there is a literature which has explored asymmetries in business cycle
variation (e.g., Hamilton [1989]; also see the discussion in Pagan [1997]). Our methodology
could, in principle, be extended to allow for asymmetric effects of positive and negative
shocks. However, for the purposes of identifying the common component, the interpretation
of such asymmetries is much less straightforward. There is little evidence that the
propagation of positive and negative shocks across countries is different or that positive and
(continued...)
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The endogeneity between the aggregate series and the individual countries is captured
in the conditioning information of the GARCH model; in particular, since A, €I,, the time-
varying weights are in the conditioning information set and can thus be thought of as known
at time . Therefore, the GARCH model also provides a mechanism for forecasting future
relative fluctuations.

To summarize, our time-varying weighting scheme has the following characteristics:
(1) the weights vary over time in a manner that minimizes the impact of country-specific
fluctuations on the common component; (ii) the weights reflect relative country size; (iii) the
methodology allows for a unified treatment of seasonal and business cycle fluctuations; and
also (iv) captures the effects of the propagation of shocks across countries without placing
restrictions on the transmission mechanism for the shocks.

III. RESULTS

The dataset used in this paper contains seasonally unadjusted monthly indices of
industrial production for seventeen OECD economies over the period 1963—-94. On average,
industrial production accounts for only about one-third of total output in these economies.
However, this index tends to be highly correlated with the aggregate domestic business cycle
and, since it represents output in the traded goods sector, is more relevant for examining the
transmission and propagation of business cycles across countries. In addition, real GDP is
available only at a quarterly frequency, which is inadequate for the implementation of our
empirical methodology given the available span of the data. The data are transformed into
logarithms and first differenced to achieve stationarity and regressed on 12 monthly dummy
variables. Reasons for this choice of transformation, along with descriptive statistics and a
discussion of other issues related to the data, are given in the Data Appendix.

We first examine the correlations of fluctuations in individual country industrial
production growth rates with a benchmark fixed-weight common component. Some
properties of the time-varying weights estimated using the univariate GARCH estimates are
then discussed, followed by a more detailed analysis of the common component constructed
using these weights.

A. Fixed-Weight Common Component

To construct a benchmark common component, we use the 1990 OECD weights as
given in the first column of Table 1 to aggregate the data into a single series. The second
column of Table 1 summarizes the correlations of this fixed-weights benchmark common
component with industrial production growth rates of the individual countries. Not

negative common shocks have different effects. Nevertheless, this is an interesting topic that
we leave for future research.



Table 1. Correlations with the Common Component of International IP Growth Fluctuations

OECD Fixed-Weight Measure of Time-Varying Weights Time-Varying Measure of
Weights the Common Component the Common Component
Mean Min. Max.
Austria 1.1 0.25 0.29 0.22 3.89 0.98 6.27 0.24 0.29 0.21
Belgium 1.1 0.08 0.07 0.08 2.25 1.00 3.32 0.18 0.31 0.12
Canada 3.1 0.28 0.25 0.29 14.71 9.04 21.77 0.62 0.65 0.61
Finland 0.5 -0.07 -0.38 0.09 3.95 0.35 12.00 0.14 0.01 0.20
France 6.6 0.00 -0.15 0.10 2.82 0.43 5.14 0.18 -0.04 0.33
Greece 0.3 0.23 0.20 0.24 331 0.90 531 0.24 0.21 0.24
Germany 10.9 0.45 0.43 0.46 3.13 0.80 4.93 0.36 0.43 0.33
Italy 7.1 0.67 0.77 0.60 0.29 0.14 0.45 0.20 0.26 0.17
Japan 19.5 0.63 0.63 0.61 14.62 2.63 27.00 0.41 0.35 0.42
Luxembourg 0.1 0.53 0.67 0.46 1.27 0.58 1.96 0.28 0.33 0.26
Norway 0.5 0.45 0.36 0.50 0.63 0.14 0.97 0.35 0.21 0.42
Netherlands 1.6 0.40 0.33 0.43 3.83 1.85 6.41 0.45 0.50 0.43
Portugal 0.7 0.57 0.61 0.54 0.39 0.09 0.60 0.22 0.29 0.18
Spain 33 0.69 0.77 0.64 0.31 0.19 0.47 0.26 0.14 0.27
Sweden 1.0 0.06 -0.09 0.10 0.78 0.09 1.25 0.13 0.37 0.14
United Kingdom 6.3 0.31 0.23 0.35 491 1.23 7.67 0.20 0.37 0.45
Unites States 36.2 0.35 0.19 0.43 38.92 14.84 51.99 0.63 0.45 0.71

Notes: The OECD weights reported in the first column are 1990 relative industrial production weights constructed using purchasing power parity
exchange rates. The fixed weights are normalized to sum to 100, as are the time-varying weights. The construction of the aggregate components using
these weights is described in the text. The BW period covers 1963:1-1973:6 and the post--BW period covers 1973:7-1994:11.

_EI_
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surprisingly, many of the countries with large weights are also highly correlated with the
aggregate series, but there is also substantial correlation with countries that have low weights
but high levels of variability. For instance, Luxembourg has a correlation of around 0.5,
higher than the correlation for the United States.

In addition, the correlation between the benchmark and the individual countries does
not appear to be constant; for example, industrial production growth in Finland and France is
negatively correlated with the benchmark in the Bretton Woods period (column 3) and is
strongly positively correlated in the post-Bretton Woods period (column 4). While some
European countries witnessed a post-Bretton Woods decline in correlation with this fixed-
weight benchmark, many countries in fact experienced an increase. These results differ from
those of Baxter and Stockman [1989], who conclude that cross-country correlations of
industrial production growth rates have declined markedly in the post-Bretton Woods period.
However, they base their conclusions on bilateral correlations with U.S. industrial production
growth rates, while the benchmark measure used here is more comprehensive.

One problem with the fixed-weights measure of the common component, as noted
earlier, is that it might in fact partly reflect country-specific fluctuations. In particular, large
idiosyncratic fluctuations experienced by countries even with relatively small weights would
tend to unduly influence the fixed-weight common component. Hence, we now turn to an
examination of the time-varying weights.

B. Time-Varying Weights

Table 1 (center panel) presents summary statistics for the estimated time-varying
weights for each country. The weights are volatile and generally quite skewed. Nevertheless,
the means and the ranges of the weights are of some interest.

In comparing the averages (over time) of the time-varying weights to the fixed OECD
weights used in the benchmark model, the time-varying weights attribute much less
importance to smaller, more highly volatile countries such as France and Spain, and
relatively more importance to the United States and Canada. In a few cases, the time-varying
weights may at first glance be surprising. In particular, Italy has the smallest weight in the
aggregate series; this is due to large seasonal fluctuations (in higher moments) associated
with the vacation structure in Italy.'> Because of this, Italy’s fluctuations are inherently more
idiosyncratic. The time-varying weights model implicitly accounts for the importance of

Note that the seasonal adjustment procedure used in this paper eliminates seasonal
fluctuations only in the conditional mean of each series. Idiosyncratic seasonal fluctuations in
the variance, as in the case of Italy, are important for the identification of our time-varying
weights. Seasonal fluctuations that are common to all countries will have no effect on the
weights with this structure. Consequently, common seasonal fluctuations, if any, would be
reflected in the time-varying aggregate.
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idiosyncratic shocks relative to common shocks when determining the weights, something
the benchmark model cannot do (unless the share of idiosyncratic to total shocks remains
constant over time). The other surprising case is that of Germany, which has a small weight
relative to its fixed OECD weight. Note that Austria and Belgium have larger average time-
varying weights than their OECD fixed weights, suggesting that these countries may pick up
part of the “German business cycle” since these economies are closely related to that of
Germany and face similar shocks.'® The average weights are somewhat misleading as the
weights tend to be very volatile. For instance, in the case of the United States, the weights
attain a minimum as low as 14.8 and a maximum of 52.0 percent of the total. The weights for -
other countries also exhibit a wide range of variation.

The time-varying weights in each time period are principally determined by the
relative fluctuations in industrial production growth across countries. A common seasonal
fluctuation will have little effect on the relative weights in a given time period, whereas an
idiosyncratic seasonal component (as in the case of Italy) will receive a smaller weight and
will, therefore, have a smaller influence on the fluctuations of the overall aggregate. This is
apparent in Figure 1, which plots the deseasonalized log differences of monthly industrial
production and the estimated time-varying weights for Italy. The deseasonalizing procedure
leaves a significant amount of residual higher moment seasonality, which leads to downward
spikes in the time-varying weights. Figure 2, which shows the deseasonalized log differences
of industrial production and the time-varying weights for the United States illustrates that
such seasonal effects are absent in this case.

Both figures demonstrate that the time-varying weights are quite volatile. In mid-
1974, the U.S. weight has a sharp downward spike, apparently reflecting the sharp effect of
the oil price shock on the U.S. economy. The mirror image of this, of course, is an increase in
the relative weights of most other countries, including Italy, in this period. Note, however,
that the U.S. weight rises quickly thereafter, reflecting the propagation of this shock to other
countries.

Figure 3 shows a plot of the estimated common component.'* The top panel of this
figure shows the common component constructed as described in equation (5), while the
lower panel shows a cumulated measure of this component. The lower panel provides a clear
indication of how the common component reflects, for instance, the global recession in 1974-
75, around the time of the first OPEC oil shock, and the recession in the early 1980s. The

BBoth Belgium and Austria have relatively strong positive correlations with Germany,
suggesting the presence of a common cycle in these countries. Pairwise correlations among
all countries are given in Appendix Table A2.

'Since it dampens the effects of idiosyncratic shocks, the common component constructed
using time-varying weights has an average volatility, as measured by the standard deviation,
that is about 40 percent lower than the average volatility of the fixed-weight aggfegat_e.



Figure 1, Italy
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Figure 2. United States
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effects of the post-1975 productivity slowdown are refiected in the slower trend increase in
the cumulated common component after 1975. Further, there are no seasonal patterns evident
in this common component, indicating the absence of common seasonal patterns in
fluctuations in industrial output among the OECD economies. "’

Correlations between the time-varying weighted aggregate series and the individual
countries’ industrial production growth rates are reported in the last panel of Table 1. There
are a few countries for which the correlations are different when compared to the correlations
with the fixed-weight aggregate. For instance, the correlation of U.S. fluctuations with the
time-varying common component is much higher than its correlation with the fixed-weight
common component. On the other hand, the correlation for Italy drops sharply when using
the time-varying rather than the fixed-weight common component. This reflects the
(substantially) lower average weight of Italy in constructing the time-varying common
component, which reduces the effect of its idiosyncratic seasonal fluctuations on the common
component. In the case of France, however, the full sample correlation with the time-varying
component is much higher than with the fixed-weight common component, even though the
average time-varying weight for France is much lower than its fixed OECD weight.

A question that arises at this juncture is the relative importance of global versus
country-specific shocks for macroeconomic fluctuations. As noted in the introduction, this
has implications for the relevance of different classes of business cycle models (e.g.,
Stockman [1988]) and also for current account dynamics (e.g., Glick and Rogoff [1995]).
Unlike in an error components framework that imposes the assumption of orthogonality
between global and country-specific shocks, however, we cannot directly answer this
question in our framework. In particular, we are interested in estimating the component that
is common to all countries. Thus, there are still possibly significant correlations between
subsets of countries. Most previous literature (e.g., Forni and Reichlin [1996], Kwark [1999])
has focused on identifying common “shocks.” We do not separately identify the nature of
individual countries’ shocks but instead attempt to identify the extent to which shocks of any
type—seasonal, business cycle, etc.—are common across countries. Nevertheless, the strong
positive correlations between individual country industrial production growth fluctuations
and the common component suggest that global shocks are quantitatively quite important.'®

*Regressions of the common component on seasonal dummies confirmed this visual
observation. We also found no evidence of residual ARCH in the estimated common
component. The Box-Pierce Q-statistic, computed using twelve autocorrelations, was 16.03,
well below even the 10 percent critical value for rejecting the null hypothesis of conditional
homoskedasticity of the residuals.

1°A principal components analysis of our dataset indicated that the first common component
obtained using this technique had an R’ contribution of about 0.25.
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C. Evaluating the Time-Varying Weight Common Component

This subsection uses two standard approaches to further evaluate the features of the
time-varying weight common component. First, to better understand the comovement
between individual country fluctuations and the common component, we regress each
country’s IP growth rate on a constant and a measure of the common component. The slope
coefficient from this regression can be interpreted as a country’s “beta” (analogous to this
concept in the finance literature) in that it measures the sensitivity of a country’s IP growth to
movements in the common component. The first two columns of Table 2 report the full
sample results based on regressions with the fixed-weight and time-varying weight common
components, respectively. Not surprisingly, in column 2, most countries (13 of 17) have
betas that exceed one, confirming that the time-varying aggregate is less volatile than IP
growth in individual countries. Furthermore, countries that experience large seasonal
fluctuations—including Italy, Norway and Spain—have correspondingly high betas. It also
appears that more of the estimated betas in column 2 are closer to unity compared to those in
column 1. Standard F-tests confirmed that the null hypothesis of a slope coefficient equal to
unity could not be rejected for only four countries when the fixed-weight common
component is used, compared to eight when the time-varying weight common component is
used. Thus, the greater degree of comovement obtained using the time-varying weights
suggests that these weights provide a better measure of the common component.

Next, to characterize the dynamic relationship between the time-varying weight
common component (CC) and fluctuations in individual countries, we estimate a set of
simple bivariate VARs and use a standard Cholesky decomposition to orthogonalize the
shocks.!” In other words, the structural assumption underlying the VARs is that a shock to
country / cannot have a contemporaneous effect on the CC, but a shock to the CC can have a
contemporaneous effect on the country. Rather than reporting a plethora of results, we only
summarize the main features of the results here. Detailed results are available from the
authors.

We cumulated the impulse responses to measure the level responses of the CC and
the individual country IP index to shocks. Interestingly, for all countries other than the U.S.,
the effects of shocks to individual country IP growth on the CC were relatively small and
transitory. This was true even for large countries such as Germany and Japan. On the other
hand, the CC has large and persistent effects on the levels of the IP indices for all countries,
including Japan and the U.S, indicating the importance of the CC for domestic fluctuations
in all of the industrial economies.

We also examined the forecast error variance decompositions from the VARs. Over
horizons of 12 to 24 months, the contribution of individual country IP growth rates to the

YBivariate VARs were run separately for each country using a constant and twelve lags each
of the respective country’s ip growth rate and the time-varying weight common component.
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Table 2. Regressions of Each Country's IP Growth on Common Components

Fixed Weight Time-Varying Weight
Common Component Common Component
Algeria 0.64 1.02 1.52 0.80
(0.12) 0.21) (0.43) 0.29)
Belgium 0.23 0.90 1.68 0.54
0.14) 0.24) 0.44) 0.29)
Canada 0.40 1.54 1.99 1.33
(0.07) 0.10) (0.20) (0.11)
Finland -0.23 0.81 0.06 1.15
0.17) (0.28) (0.50) (0.35)
France -0.22 0.86 -0.26 1.36
(0.15) (0.25) (0.56) 0.24)
Greece 0.72 1.25 1.22 122
(0.15) (0.26) (0.48) (0.31)
Germany 1.22 1.65 2.10 1.49
0.12) 0.22) (0.38) 0.27)
Italy 4.26 2.23 3.70 1.61
0.24) (0.54) (1.17) (0.58)
Japan 0.98 1.10 0.95 1.12
0.06) (0.12) 0.22) (0.51)
Luxembourg 241 2.17 2.63 2.06
(0.20) (0.38) 0.65) (0.48)
Norway 2.60 3.43 1.92 430
(0.26) (0.46) (0.78) (0.58)
Netherlands 1.14 2.19 227 2.18
(0.13) 0.22) 0.34) 0.29)
Portugal 3.15 2.11 3.69 1.45
(0.23) 0.47) (1.03) 0.49)
Spain 4.09 2.65 3.30 2.39
(0.22) (0.49) (1.06) (0.54)
Sweden 0.29 1.18 0.75 1.38
(0.26) 0.44) (0.45) (0.63)
United Kingdom 0.75 1.73 1.43 1.93
0.12) 0.19) 0.31) 0.24)
United States 0.30 0.90 0.66 1.01
(0.04) (0.06) 0.11) (0.06)

Notes: The coefficients reported above are from regressions of each country's IP growth rate on the respective
common component and a constant. Standard errors are reported in parentheses.
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forecast error variance of the CC is quite small and is generally less than 10 percent, even for
relatively large countries such as Germany and Japan. The maximum contribution is about
15 percent in the case of the United States. The results are quite similar at longer forecast
horizons. On the other hand, the relative importance of the CC for the forecast error variance
of TP growth rates over a one to two-year horizon is much larger and is in the range of

15 percent for large countries such as Germany and Japan as well as many of the smaller
countries. The maximum is for the United States, at about 50 percent. Interestingly, for
countries such as Italy and Spain that have large idiosyncratic seasonal fluctuations, the
relative importance of domestic fluctuations for the forecast error variance of the CC is
barely 5 percent, similar to that of far smaller countries. Further, the CC explains a relatively
small fraction of the forecast error variance of IP growth in these economies. Thus, the time-
varying weight common component that we have constructed appears to have reasonable
properties.

IV. EXTENSIONS

This section extends and explores the sensitivity of the results discussed in the
previous section. First, we separately examine the properties of the time-varying weights
common component over the Bretton Woods and post-Bretton Woods periods. Examining
correlations of individual country fluctuations with the common component in international
fluctuations enables us to address the question of whether the correlation of business cycles
across countries has changed significantly in the post-Bretton Woods period. However, with
the reduced-form approach adopted here, we can document these stylized facts but cannot
directly attribute changes in the patterns of these correlations to changes in exchange rate
regimes or other factors.

Second, we construct a measure of the European common component and examine its
properties. There has been growing interest in the relative importance of common economic
fluctuations, particularly in the context of European Economic and Monetary Union (EMU).
The exchange rate plays a potentially useful role as an adjustment mechanism in response to
country-specific shocks. Hence, the relationship between country-specific and common
fluctuations could have important implications for the success of a currency union. Finally,
we examine the sensitivity of the results to our choice of deseasonalizing procedure. In
particular, the time-varying weights methodology implicitly accounts for common seasonal
fluctuations. Thus, the effects of deseasonalizing should be less important with our time-
varying aggregate than with the benchmark aggregate. In addition, residual seasonality
should also be lower.

A. Bretton Woods

Table A1 documents that industrial production growth has slowed in all countries
during the post-Bretton Woods period.'® Based on standard deviations of the data, however,

8This decline is also related to the oil shock of the early 1970’s and the subsequent
productivity slowdown.
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there does not seem to be a systematic commensurate change in volatility. We investigate
this more thoroughly in this section. Failure to control for the mean change could result in
misleading inference about the conditional variance (Lumsdaine and Ng [1999]) which, in
turn, could affect the accuracy of the time-varying weights. To investigate this possibility, we
estimate a modified version of equation (3):

Y. =¢ +c, 1(t>1973:6)+¢,, £, |1,_1 ~N(0,h,) (6a)
hit =W, + ai£i3—1 + ﬂkhit-l ’ (6b)

where 1(4) is an indicator variable equal to 1 if event 4 is true and 0 otherwise. That is, in the
deseasonalized data, we allow for a change in mean associated with the end of Bretton
Woods."”

The means of the associated time-varying weights estimated using this specification
were similar across the Bretton Woods and post-Bretton Woods periods. The correlations of
individual country industrial production growth fluctuations with the time-varying weight
common component for these two periods are reported in the last two columns of Table 1.
For most countries, the correlations are similar across the two subperiods. The United States
and certain European countries including Finland, France, Norway, and Spain have more
strongly positive correlations with the common component in the post-Bretton Woods
periods. On the other hand, the correlations with the common component decline in the post-
Bretton Woods period for some countries such as Belgium, Germany, Portugal, and Sweden.

Of particular interest is the comparison of the betas (as before, these are the
coefficients from regressions of individual country IP growth on the common component and
a constant) between the BW and post-BW periods, as shown in the last two columns of Table
2. In the post-BW period, 13 of the 17 countries have betas that are closer to (in 12 cases) or
equal (in 1 case) to unity than the betas in the earlier period. This suggests that, in the post-
BW period, fluctuations in IP growth in industrial countries have been driven more by
common fluctuations, as measured by the time-varying common component, and have been
less subject to idiosyncratic fluctuations. This provides some evidence to support the theory
that macroeconomic fluctuations have become more closely linked in the post-BW period
(see, e.g., Gerlach [1988]). We do not find evidence to support the notion that economic
fluctuations have become substantially more country-specific in the post-Bretton Woods
period (see, e.g., Baxter and Stockman [1989]). In our view, the main conclusion to be drawn
from these results is that virtually all countries have a strong positive correlation with the

1 Alternatively, we could estimate separate GARCH(1,1) models for the two subperiods;
such a procedure is problematic due to the diminished number of observations. Accurate
estimation of the GARCH(1,1) model typically requires a large number of observations; see,
for example, Hong [1987] and Lumsdaine [1995].
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common component in international fluctuations, particularly in the post-Bretton Woods
period, confirming the existence of a “world business cycle.”

B. European Common Component

This section examines alternative measures of the common component in European
economic fluctuations, constructed using all countries in the sample except Canada, Japan,
and the United States. The fixed weight component uses the same OECD 1990 weights
discussed earlier while the time-varying component is constructed using equations (4) and
(5); both sets of weights are normalized to sum to 100 for the European countries in each
time period.

Table 3 reports summary statistics for the time-varying weights and the correlations
of each country’s industrial production growth rate with both the fixed and variable weight
measures, for the full sample and also for the Bretton Woods and post-Bretton Woods
subsamples. As in the case of the world common component, Italy and Spain experience
many idiosyncratic shocks and thus receive substantially less weight using our time-varying
method than in the fixed-weight aggregate.

The correlations of individual country fluctuations with the European common
component are strongly positive for virtually all of the European countries. The last column
of Table 3 indicates that this result is more evident in the post-Bretton Woods sample and
confirms the existence of a “European business cycle.”° For most European countries, the
full sample correlation with the European common component is significantly stronger than
the correlation with the world common component. An interesting finding is that, despite
their relatively large weights in the construction of the European common component, both
France and the United Kingdom have higher correlations with the world common component
than with the European common component. Fluctuations in the United States were
negatively correlated with the European common component during the Bretton Woods
period but are positively correlated in the post-Bretton Woods period. Fluctuations in Japan
and Canada are positively correlated with the European component in both periods. Also,
perhaps not surprisingly, the aggregate constructed with time-varying weights is more highly
correlated with the time-varying world common component than with the fixed-weight
counterpart.

C. Seasonal Adjustment

As discussed in Section II, the procedure for deseasonalizing unadjusted data could
potentially have a large impact on the empirical results. The time-varying weights

20 Artis and Zhang [1999] arrive at a similar conclusion by examining bivariate cross-country
correlations of industrial production growth fluctuations and using a number of different
detrending techniques.



Table 3. Correlations with the Common Component of European IP Growth Fluctuations

OECD Fixed-Weight Measure of Time-Varying Weights Time--Varying Measure of
weights the Common Component the Common Component
Mean Min. Max.
Austria 2.60 0.29 0.28 0.29 12.29 3.67 17.13 0.46 0.41 0.49
Belgium 2.60 0.20 0.20 0.20 7.13 3.51 10.92 0.45 0.54 0.39
Finland 1.30 -0.03 -0.30 0.13 12.07 1.19 2237 0.29 0.14 0.36
France 16.10 -0.09 -0.22 0.02 8.89 1.34 13.19 -0.04 -0.25 0.11
Greece 0.80 0.30 0.32 0.29 10.51 3.03 15.51 0.47 0.53 0.42
Germany 26.40 0.51 0.48 0.54 9.92 2.68 14.31 0.44 0.54 0.38
Ttaly 17.40 0.81 0.86 0.76 0.91 0.44 1.23 0.45 0.48 0.43
Luxembourg 0.30 0.61 0.77 0.52 4,03 1.78 517 0.45 0.56 0.39
Norway 1.30 0.40 0.27 0.47 201 0.51 3.00 0.30 0.07 041
Netherlands 3.90 0.45 0.38 0.50 12.06 6.55 17.05 0.67 0.70 0.65
Portugal 1.80 0.68 0.68 0.68 1.22 0.34 1.61 0.44 0.47 0.43
Spain 8.00 0.79 0.83 0.75 0.98 0.57 1.35 0.43 0.42 0.45
Sweden 2.30 0.02 -0.15 0.08 2.46 0.29 3.57 0.24 0.08 0.29
United Kingdom 15.30 0.19 0.16 0.21 15.52 4.52 22,58 0.25 0.21 0.27
Canada 0.21 0.26 0.16 0.32 0.48 0.20
Japan 0.38 0.43 0.35 0.21 0.14 0.22
United States 0.02 -0.11 0.09 0.06 -0.12 0.14
World common 0.54 0.52 0.56 0.69 0.71 0.68
component

Notes: The European common component was contructed using all the countries in the sample excluding Canada, Japan, and the United States.

The fixed OECD weights and the time-varying weights were normalized to sum to 100 for the European countries.

-sz_
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methodology developed in this paper should, in principle, discriminate between country-
specific and common seasonal fluctuations and adjust each country’s weights accordingly.
But, as noted earlier, we removed seasonal means from each country’s data by regressing on
a set of seasonal dummies in order to avoid the problems that could result from the
misspecification of conditional means. To examine the sensitivity of the results to this
procedure, we recomputed the time-varying weights and the international common
component using unadjusted data. The use of unadjusted data may be viewed as allowing for
common deterministic seasonal fluctuations to be reflected in the common component.

To conserve space, we summarize only the main results here.” The relative ranking
in terms of average weights was roughly similar to that in Table 1 although there were some
differences. The mean weight for the United States was higher at 53.1 percent while the
weights for Canada and Japan were smaller, suggesting that the deterministic components of
seasonal fluctuations in the latter two countries are idiosyncratic. The correlations between
individual country fluctuations and the common component were generally higher than those
reported in Table 1, indicating that part of the fluctuations that are captured by deterministic
seasonal dummies is similar across countries. We are reluctant to make too much of these
results because of the possible misspecification problems that could arise from the use of
unadjusted data. Nevertheless, the principal result about the existence of a substantial
common component in international fluctuations is confirmed by these correlations.

V. CONCLUDING REMARKS

This paper has proposed a new methodology for estimating the common component
of international economic fluctuations. The methodology accounts for relative country size
and also captures the effects of the cross-national propagation of shocks, without imposing a
formal structure on the dynamic propagation of these shocks across countries. In addition, it
provides a unified treatment of seasonal and business cycle fluctuations, allowing for
correlations between these fluctuations while eliminating the impact of idiosyncratic seasonal
variation on the common component.

The methodology is based on two properties of fluctuations in industrial production
growth rates that were documented in this paper. The first is the negative relationship
between country size and the volatility of industrial production growth rates among OECD
industrial countries. The second property is that industrial production growth rates exhibit
evidence of conditional heteroskedasticity. Combining these two features suggests a time-
varying weighting scheme for measuring the common international component where the
time-varying weights are inversely proportional to the relative conditional variance of
industrial production growth rates for each country.

%1 A table detailing these results is available from the authors on request.
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The methodology has potential applications for aggregation in a wide variety of other
contexts where conditional volatility provides a natural stochastic specification with which to
form time-varying weights. Possible further applications include the construction of stock
market indices and aggregate price indices. Another interesting extension of this approach
would be to examine if there is systematic variation in the conditional volatility of output
growth over different phases of the business cycle (see the discussion in Diebold and
Rudebusch, 1996). This could have implications for business cycle modeling as well as
forecasting. The model developed in this paper could also be extended to test for business
cycle asymmetries, although, as noted earlier, we do not see compelling reasons why the
weighting scheme itself should treat positive and negative shocks asymmetrically.

In the empirical example considered here, we found that industrial production growth
fluctuations in virtually all countries in the sample have strong, positive correlations with the
common component of international fluctuations constructed using time-varying weights.
This phenomenon was more apparent in the post-Bretton Woods period. Similar results were
obtained when we constructed a time-varying measure of the common component in
European economic fluctuations. Virtually all European countries in the sample had strong,
positive correlations with this common component, which was distinct from the world
common component. These results confirm the importance of common international
influences in driving business cycle fluctuations in the main industrial economies.
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Technical Appendix A

This appendix provides a simple and highly stylized illustrative example to motivate
the methodology for constructing time-varying weights. Consider the following model:

Yo = QU té&,

where y, is country i’s IP growth rate, which can be decomposed into a piece based on the
common component #, and an idiosyncratic component &, . In vector form, the model is
written as:

Y = aU, +¢,

where 7, @, and &, are of dimensionn x 1, and U, is of dimension 1 x 1. Also, asina
standard factor model, assume that U, and &, are independent. The variance covariance
matrix is given by

E[gtg:] = D = [dii’t] where d,, = f(Vi,)

that is, its elements are functions of lagged IP growth, which vary across equations.
Now consider the special case where & =an n x 1 vector of ones and the variance of #,,

. . . . n 1&
denoted o, is constant. The least squares estimator of u, is then givenby #, = —Z Vi -
n i=1

This estimator is not optimal, however, due to the heteroskedasticity of ¢,. In this case, GLS
is optimal and is equivalent to the LS estimationof y, = &, u, +¢€,

n
i and & = @, = >.w,y,, wherethe

~ ~ 1
where &, is spherical, y, = . ——— Thus,
t P Y dii,t \Idii i=1

weights are given by
1

&, NCa

TR(D) ¢

L
2 du
i=1

and TR(D) is the trace of the matrix D.
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Technical Appendix B

This appendix provides a few numerical examples that illustrate two points made in
the text. The first set of examples shows how the common component constructed using
time-varying weights from the GARCH (1,1) model captures the dynamic propagation of
shocks across countries. The second example illustrates that time-varying weights
constructed using a more restrictive model such as an ARCH(1) specification can not capture
these feedback effects.

Assume that there are two countries, A and B. The parameter values (corresponding
to equation 3 in the text) are assumed tobe w, =0.L, ¢, =0.4, 8, = 0.5, for i = A, B. That is,
for simplicity, assume that the two countries are driven by the same conditional volatility
process. Also assume that shocks are normally of magnitude equal to 1, so that
h, =1, implying that, initially, both countries are weighted equally, with weights equal to V2.
We will examine the effects of a shock of magnitude 2.

Example 1: GARCH(1,1) model
Case 1: Both countries experience a simultaneous shock of the same magnitude.
In this case, the weights will not change, demonstrating that common fluctuations do not alter

the relative weights.

Case 2: Country A receives an idiosyncratic shock of magnitude 2; shocks return to normal
magnitude in the following period.

Period 1: h, = 014042+ 050 = 22
hy, = 0.1+ (041 + 050 = 1
1
W, = —‘/—ET— = 04
1+ 22
Wy = 1-w, = 06

Period 2: h, = 01+ (041 +(05(22) = 16
h, = 01+ (04HD* + 05D = 1

V1.6
-1
1 + 416

Wy, = 1-w, = 056

= 044

13

Period 3: hy, = 01+ (0417 + (0.5)(1.6)
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h,, = 0.1+ (04N> + (051 = 1

e = B oy
1 + <13
W = 1-w,, = 0353

In this case, the relative weight of country A is reduced due to the idiosyncratic shock but, as
the shock does not propagate, the weights move back to their original levels, with country A
approaching this level from below and country B from above.

Case 3: Country A receives a shock of magnitude 2; this shock is propagated to country B in
the following period.

Period 1: h, = 01+ (04)(2)°+0510) = 22
hy = 0.1+ (041 + (050D = 1
1
Wa = Lz_gl_— = 04
1+ 422
Wg, = 1-w, = 06

Period2:  h, = 0.1+ (0.4)(1)* +(0.5)(22) = 16
h,, = 0.1+ (0.4)(1) + (05(1) = 22

1

Wy = ——— = 054
V1.6 + 422
Wg, = 1-w,, = 046
Period 3: hy, = 01+ (041 +(0.51.6) = 13

By, = 0.1+ (041 + (0.5)(22) = 16

V13

Wy = ———— = 0353
V13 + 416
Wg, = 1-w,, = 047

In this case, the relative weight of country A is reduced in this first period, just as in
case 2. Note that, in the initial period of the shock’s arrival, we cannot distinguish whether or
not the shock is common or idiosyncratic. However, as the shock propagates to country B in
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the second period, country A receives a higher weight. In addition, country B’s weight is not
reduced by as much as it would be if the shock hitting it was purely idiosyncratic.
Subsequently, the conditional variances and the weights settle back down to their original
levels.

The GARCH(1,1) model is preferred to an ARCH(1) because it allows for feedback
effects as illustrated above. Without the S coefficient, however, weights would still change

but the propagation of the shock to other countries would not be captured. The next example
shows this.
Example 2: ARCH(1) model

Assume that the true values of w, and «; are 0.1 and 0.9, respectively, and that §,=
0, for i = A, B. These values are chosen such that, as in the previous example, the initial
values for h,, and A, are both equal to 1 and the weights for the two countries are equal to

Y2 . This model implies that conditional volatility follows an ARCH(1) process. In this case, a
shock to either country will result in that country receiving a lower weight in the current
period, but the weight will return to the original level in the following period. Consider case
3 above:

Period 1: h, = 01+ (092 = 37
hy, = 01+ 091> = 1
—
e = BT o5
1+ 437
Wg, = 1—-w, = 066

Period 2: h, = 01+ (091> =1
hy, = 01+ (09)(2) = 37

W, = 1 - = 0.66
1+ \/_3___7
Wy = 1—w, = 034
Period 3: h, = 01+ (091> = 1
hy, = 01+ (0.9)1)> = 1
Wy = Wy = 05

In this case, the relative weight of country A is reduced in the initial period. As the
shock propagates to country B, the relative weights are reversed since the shock is interpreted
as an idiosyncratic shock to country B in the second period. In the third period, weights
immediately return to their pre-shock level.
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Data Appendix

This appendix briefly describes the data used in the analysis, and elaborates on some
of the issues discussed in Section II, including that of seasonality.

Monthly indices of industrial production (not seasonally adjusted) for 17 OECD
economies over the period 1963-94 were taken from the OECD Analytical Database.?? The
data are transformed into logarithms and first differenced to achieve stationarity and are then
seasonally adjusted by regressing the log differences on 12 monthly dummy variables. We
choose to take first differences in part because, as noted by Baxter and Stockman [1989], this
procedure “emphasizes the higher frequencies associated with business cycles” relative to
linear detrending.”® Table Al provides summary statistics for the data over the full sample
and also for the Bretton Woods (BW) and post-Bretton Woods periods.

An important issue that arises in using unadjusted macroeconomic data is the relative
importance of seasonal fluctuations. Visual inspection of our monthly industrial production
data indicated that there were strong seasonal components in virtually every country in our
sample; these were particularly large and noticeable in countries like Italy. Further evidence
is provided by time series regressions which show that deterministic seasonal dummies can
explain a substantial fraction of variation in monthly industrial production growth rates for
most countries.**

*?Because of a large outlier associated with the student strike in France in 68:5, we
interpolated this observation.

BWe tested the hypothesis that the raw data are difference stationary by testing for the
presence of a unit root in the logarithms of the data using an Augmented Dickey-Fuller
regression with twelve monthly seasonal dummy variables included. The results of these tests
are given in Table A1. We find that in only one case is the unit root hypothesis rejected in
favor of trend-stationarity—the United States. This is somewhat at odds with previous results
for the United States; for example, Nelson and Plosser [1982] did not reject the unit root
hypothesis for industrial production using annual data from 1869-1970. Gerlach [1988], who
used industrial production data for 1963:9-1986:3, also finds very little evidence against the
unit root hypothesis in the Bretton Woods (BW) and post-BW periods for the countries in his
sample, including the United States. Hence, we take first differences in order to transform the
data for all countries in a uniform manner. As a check that we have adequately purged the
data of nonstationarity, we also tested the differenced data for the presence of a unit root. For
every country, the null hypothesis of a unit root in the first differences was rejected in favor
of stationarity.

24For the countries in our sample, regressions on seasonal dummy variables indicated that, on

average, about 80 percent of the variation in log differences of unadjusted monthly industrial

production could be explained by these seasonal factors. The R’ from these regressions
(continued...)
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The appropriate treatment of seasonal effects is, however, fraught with complications.
A simple procedure adopted by many authors (e.g., Beaulieu and Miron [1992], Beaulieu,
MacKie-Mason, and Miron [1992]) is to regress the unadjusted data on seasonal dummies.
Other deterministic filters such as the Census Bureau’s X-11 procedure have also been used
widely, although it has been argued that such filters do not necessarily retain the salient
features of the data (e.g., Ghysels and Perron [1993]). On the other side of the debate are
authors such as Franses, Hylleberg, and Lee [1995] who argue that stochastic seasonality in
the form of seasonal unit roots is the appropriate characterization of seasonal fluctuations.
These authors recommend seasonal differencing in order to eliminate unit roots at seasonal
frequencies.

As mentioned in the text, we prefer to remain agnostic on the appropriate
characterization of seasonal variation in the data. Hence, we deal with seasonality only to the
extent that it could potentially interfere with identification. As a practical matter, we take out
only the deterministic seasonal component by regressing the raw data on 12 monthly
dummies and using the residuals in our empirical work. In Section IV of the paper, we test
the robustness of our results to this transformation by using seasonally unadjusted data.

ranged from 53 percent for Greece to 95 percent for Sweden. In most cases, the seasonal
effects remained as important even when quarterly averages of the unadjusted data were
used.



Table Al. Descriptive Statistics for and Time Series Properties of Industrial Production Indexes

Austria
Belgium
Canada
Finland
France

Greece
Germany
Italy

Japan
Luxembourg

Norway
Netherlands
Portugal
Spain
Sweden

United Kingdom
United States

Annualized Mean Growth Rates Standard Deviation ADF Statistics Box-Pierce
(in percent)
3.64 5.92 2.54 0.036 0.031 0.029 -1.99 -5.08 103.66
2.50 494 1.18 0.040 0.029 0.035 -1.78 -5.88 80.51
3.61 6.91 1.83 0.021 0.019 0.017 -3.38 -3.48 85.70
4.37 6.76 3.34 0.045 0.022 0.043 -1.72 -4.51 349.29
2.72 5.69 1.09 0.041 0.037 0.029 -1.69 -5.13 157.99
491 10.09 1.65 0.044 0.030 0.039 -0.92 -4.80 4221
2.37 493 0.90 0.038 0.032 0.036 -2.52 -3.97 39.38
3.14 5.99 1.67 0.091 0.039 0.059 -2.29 -5.02 404.00
5.44 11.47 247 0.022 0.016 0.021 -2.14 -3.58 94.73
2.01 3.23 1.41 0.065 0.024 0.059 -2.48 -5.05 223.78
5.44 5.30 5.13 0.082 0.056 0.083 -2.05 -7.96 99 91
3.51 7.34 1.04 0.041 0.025 0.041 -2.35 -5.38 31.20
4.52 5.90 3.65 0.079 0.051 0.051 -0.07 -6.01 286.67
4.61 1043 1.76 0.085 0.039 0.059 -2.36 -3.08 337.59
2.47 5.19 1.25 0.073 0.034 0.084 -2.78 -5.91 311.35
1.84 3.17 1.08 0.034 0.026 0.036 -3.32 -5.29 60.51
3.35 5.46 2.22 0.012 0.008 0.011 -497 -3.83 4275

Notes: The descriptive statistics reported in the first two panels of this table are for data that were transformed into logarithms, first
differenced, and then descasonalized by regressing on a set of monthly dammies. The Bretton Woods period covers 1963:1 - 1973:6 and
the post-BW period covers 1973:7 - 1994:11. The annualized mean growth is calculated as 100* ((1+MEAN)*12) - 100, where MEAN is
the sum of the coefficients on the deterministic seasonals in the deseasonalizing regression. The ADF regressions for the levels included a
constant, a time trend, and twelve lags of the dependent variable--deseasonalized log differences of monthly industrial production. The
critical values for the ADF statistic in this case are -3.41 (5 percent) and -3.12 (10 percent). The ADF regressions for the differences were

similar except that no trend term was included. The 5 percent critical value for the ADF statistic in this case is -2.92. Using residuals from
a regression of ip growth on a constant and 12 lags of ip growth, the Box-Pierce Q-statistics for the squared residuals were computed
using twelve sample autocorrelations Under the null, this statistic is distributed as chi-squared with 12 degrees of freedom. The 1 percent
critical value for this test statistic is 26.2.
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Table A2. Cross-Country Correlations of Industrial Production Growth Rates: Full Sample

Sweden

United States

1.00
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