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Abstract

In this paper we establish the asymptotic distribution of DeFries-Fulker (1985) regres-
sion estimates for heritability and shared environmental influences with double-entry
twin data. A simple formula to estimate the covariance matrix of the coefficients in
DF-regressions is provided, and applications to simulated data and Danish twin data
show that this method can substantially increase the statistical power of the analy-
ses. We also provide an ‘efficient DF-analysis’ that yields more precise estimates when

additional covariates are included among the explanatory variables.
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1 Introduction

DeFries and Fulker (1985) propose a method of estimating heritability (h?) and common
environmental influences (c?) with twin data by a simple linear regression of a twin’s trait

on her co-twin’s trait and the degree of genetic relatedness. The initial development of the
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DeFries and Fulker (DF) method focused on selected twin data in which one member of each
pair is a proband. The method has subsequently been generalized to include random samples
of twins (Cherny, Cardon, Fulker, and DeFries 1992), and several authors have shown that
the regression coefficients in the DF-analysis provide unbiased estimates for heritability and
shared environmental influences (LaBuda, DeFries, and Fulker 1986; Rodgers and McGue
1994). In addition, several extensions have been proposed that allow the consideration
of genetic non-additivity (Waller 1994), observed differences in non-shared environment
(Rodgers, Rowe, and Li 1994), and binary or censored observations (Kohler and Rodgers
1999). DF-regressions in these different variants have been widely used with selected and
unselected twin or kinship data because of their simple and flexible implementation (Cherny
et al. 1992; Cyphers et al. 1990; Fulker et al. 1991; LaBuda and DeFries 1990; Rodgers
and Rowe 1987; Rodgers et al. 1994; Rodgers et al. 1998; Zieleniewski et al. 1987).

The ambiguity in unselected samples as to which twin’s trait should be used as the
dependent, and which as the independent variable, is frequently resolved by using double-
entry (Haggard 1958). Each twin pair is entered twice in the data, and each member of
a twin pair provides once the dependent and once the explanatory variable.! While the
consistency of the regression estimates for heritability and environmental influences is not
affected by double-entry, the standard errors of the coefficients are obviously biased. It has
been common practice to adjust these standard errors for the correct degrees of freedom. In
large samples this adjustment is achieved by multiplying the standard errors obtained from
the double-entry regression with an adjustment factor v/2, or alternatively, by multiplying
the covariance matrix obtained in the initial regression by the factor 2.

This approach is problematic for at least two reasons. First, the DF-regression is hetero-
scedastic—even with single entry data—because a co-twin’s trait is a better predictor of
the proband’s trait in MZ twin pairs as compared to DZ twin pairs. This implies that the
residual variance in the DF-regression is larger for DZ twins than for MZ twins. This het-
eroscedasticity potentially distorts the estimated covariance matrix of the parameters. The

above adjustment for the degrees of freedom in double-entry data may therefore be based

!Cherny et al. (1992) point out two alternative possibilities. They note that each of the 2N possible
combinations of twin assignment as proband could be considered and the average estimate obtained. Alter-
natively the average of the estimate obtained from a smaller number of analyses based on random assingment

could be used.



on a distorted and inappropriate starting point, which subsequently may lead to erroneous
significance tests even after the adjustment. Second, the degrees-of-freedom adjustment
achieved by multiplying covariance matrix with a factor 2 is conservative. It assumes that
double-entering a twin pair does not increase the information—or loosely speaking, the over-
all degrees of freedom—in the sample. However, this is not the case and double-entering
each twin pair not only resolves the ambiguity in the assignment of the proband, but also
increases the information available for the inference of heritability and shared environmental
effects.

In this paper we establish the asymptotically correct covariance matrix of the coefficients
in DF-regressions with double-entry data and we provide a simple estimator for this covari-
ance matrix.? The analysis is based on the interpretation of DF-regressions as a generalized
method of moment (GMM) estimator. This interpretation also suggests that DF-analysis
is inefficient when it is combined with additional covariates, and we propose an ‘efficient
DF-estimation’ for these cases. This efficient method yields more accurate estimates than
the linear regression used in standard DF-analysis. STATA programs to estimate both the
correct covariance matrix and the efficient DF-estimator are available from the first author
of this paper.

The remainder of the paper is structured as follows. Section 2 investigates DF-analysis
with double-entry data within the perspective of standard linear regression. Section 3
shows how DF-regressions can be interpreted within the framework of generalized methods
of moments. This Section also establishes the asymptotic distribution of the estimated
coefficients and derives an efficient DF-estimation that is asymptotically preferable when
DF-regressions contains additional covariates. Section 4 provides simulations that compare
the different estimators in this paper with results obtained from bootstrapping the data.
Section 5 applies the methods to body height and body mass index in a sample of Danish

twins, and Section 6 concludes.

?With a few straight-forward modifications, this method resolves the heteroscedasticity problem of DF

regressions also in selected twin samples with single-entry data.



2 DF-Analysis from a Regression Perspective

In order to motivate our GMM approach to the estimation of heritability and shared en-
vironmental effects, it is useful to first revisit DF-analyses with double-entry data in the
framework of linear regression.?

The ‘augmented DF-analysis’ estimates the regression wy; = By + Biwz; + BoR(25) +
B3 R(zj)waj, where wj; is the trait value of twin 4 = 1,2 in pair j, z; is the zygosity, and
R(z;) is the degree of genetic relatedness of the twin pair. In the development of this
method, DeFries and Fulker (1985) assume an additive genetic model with no assortative
mating and with equal environmental influences across kinship categories. The phenotype
wj; of twin ¢ within twin-pair j can therefore be linearly decomposed as w;; = ¢j + a;; + €5,
where ¢; represents the shared environmental influences experienced by the twins in pair j,
a;; is the additive genetic value of twin ¢ in pair j, and e;; denotes influences on the trait
wj; that are individual-specific to twin ¢ in pair j. This relation can also be written in terms

of deviations from the mean as

wij =W + & + A5 + €5, (1)
where W = Ew;; is the overall expectation of the trait, and ¢; = ¢; — ¢, a;; = ai; — a,
eij = €;; — e are the deviations from the expected values ¢ = Ec¢;, a = Ea;j, and e =
Ee;; of the underlying genetic and environmental determinants of the trait. The additive
genetic model then implies that the observations (w1, ws;)" are independently distributed
according to a bivariate distribution with a mean vector (w,w)" and a covariance matrix

)(2;) that depends on the zygosity z; of a twin pair. In particular, the standard genetic

model described above implies that

2= ()" 2

where o2, is the variance of the trait w;j, and p(z;) = ¢* + h?R(2;) is the within-twin pair
correlation of the trait as a function of the zygosity z;. Some weak regularity conditions
on this distribution are necessary to ensure asymptotic normality of regression and related
estimators, and we assume throughout this paper that all fourth moments of (w1, w2;)" are

finite.
3For related analyses see also LaBuda, DeFries, and Fulker (1986), Rodgers and McGue (1994), Waller
(1994) and Rodgers, Rowe, and Li (1994).




The expected value of the first twin’s trait wi;, conditional on the second twin’s trait
ws;, in the above model equals E[wyj|wa;] = @ + ¢*(wg; — @) + h?R(z;)(wej — w) = (1 —
A)w + twyj — h2wR(z;) + h2R(zj)waj, where h? = var(a;;)/ var(w;;) is the coefficient of
heritability of the trait, and ¢® = var(c;;)/ var(w;;) is the coefficient of shared environmental
influences associated with the trait. This conditional expectation provides a direct intuition
for DF-analysis. Since the expectation E[w;j|ws;] is a linear function of ws;, R(z;) and
R(zj)ws;, it can be estimated using standard regression techniques. Moreover, because two
of the coefficients in this linear relation correspond to ¢ and h?, the regression coefficients
provide direct estimates for the heritability and shared environmental influence.

In the following we introduce some additional notation in order to investigate the proper-
ties of this DF-regression further. First we define the coefficient vector 3 = (8, 81, B2, 33)"
which we intend to estimate using DF-regression analysis. The regression coefficients cor-
respond to the above genetic model as 3, = (1 — ¢®)w, B, = c?, By = —h*w, and (5 = h?.
Second, we adopt the standard notion ‘y’ and ‘@’ to denote left- and right-hand-side vari-
ables in regression analysis. In particular, we denote as y1; = wi; and x1; = (1, wa;, R(z;),
R(zj)ws;) the left- and right-hand-side variables in the DF-regression for twin 1 in pair
j. The corresponding vectors yz; and wxg; are also defined for the second twin with the
proband assignment reversed. We then stack the observations for both twins in a pair and
write y; = (Z;j) and x; = (i;)

When only the subscript j is present, the vectors/matrices ‘y’ and ‘@’ refer to the data
in a twin pair, while the presence of the additional subscript ‘1’ and ‘2’ specifies the data
for either the first or second twin within a pair. We also define the stacked matrixes
Y =(vyy,---,y,) and X = (2),...,},) which contain the complete double-entry data for
all twin pairs 57 =1,... ,n.

The expectation of y; = (w1, ws;)’, conditional on the respective co-twin’s realization
of the traits (wa;,w1;), can now be written as (g{z;}i;ﬁ) = xj3, which directly leads to
the DF-regression specification y; = x;3 + ¢;. The term ¢; = (g1, 2;)" is the residual in
the DF regression of pair j. It is important to observe that this DF-regression satisfies for
each twin ¢ within pair j the condition Ele;j|xi;] = Elyi; — ij5|i;] = 0. This condition is
essential for OLS in order to yield unbiased and consistent estimates for the parameters of

interest (8 since DF-analysis is sometimes erroneously criticized for an apparent correlation



between the variables in x;; and the corresponding residual term ;.

The absence of any correlation between x;; and ¢;; is seen by investigating the relation
of the residual term ¢;; to the various components of the underlying genetic model. In
order to establish this relation, we first define a matrix Q(z;) = <7pézj) —szj)). We then
stack relation (1) for both twins in a pair, and we premultiply this stacked relation with
the matrix ((z;) to obtain

Q) (10 T0) = (DT T, ®)

Wo; — W éj + &Qj + égj

~~
=€j

After carrying out the matrix multiplication on the left side we find that the terms on the
left side of (3) equal y; — ;5 = ;. The right hand side of (3) is hence a representation of
the residuals ; in terms of the genetic and environmental determinants of the trait w;;.

Since we have defined y; = (w1, w2;)’, the expectation E[y;e}] reveals the correlation
between each trait value and the residual in the DF-regression

s - ~ X N

s = [(0T0 T (e =t ()
The first equality in (4) follows from (1) and (3). The second equality follows from the
observation that the matrix Q(z;), multiplied by [02 (1 — p(2;))?] 1, is inverse of the covari-
ance matrix )(z;) in (2). Since the expectation E[y;e’] is a diagonal matrix, it follows that
the residual term e1; is uncorrelated with wo;, and similarly, that e9; is uncorrelated with
wij. Since the matrix x1; (or ;) consists only of constant terms and ws; (or wyj), the
residual term ¢;; is uncorrelated with the respective right-hand-side variables contained in
Tij.

At the same time, the residuals €1; and €2, are neither independent of each other nor are
they perfectly dependent. In particular, the covariance matrix of the error term ¢; follows
from (3) and (2) as

Beich = Q)05)Q'() = - o) (). )

—p(z;) 1
This covariance matrix is useful because it reveals two important aspects in which double-
entry DF-analysis deviates from the standard OLS model. First, the residuals across indi-
viduals in the sample are not independent but correlated within twin pairs. This correlation

will typically be negative and equal to —p(z;), i.e., it equals the negative correlation of the



trait within twin pairs. Second, since p(z;) is typically larger for MZ twins than for DZ
twins, the residuals are heteroscedastic across monozygotic and dizygotic twins whenever
the trait w;; has a genetic influence, i.e., when h? > 0.

In addition to the correlation and heteroscedasticity of the residuals, the z;;’s within a
twin pair are not independent and the usual interpretation of the estimated coefficient as
‘conditional on the data X is not appropriate because the x;’s consist of realizations that are
used both in the dependent variable as well as in the explanatory variables. Neither of these
complications affect the consistency and unbiasedness of the estimated coefficients BDF in a
regression-based DF-analysis. However, they do affect the standard errors associated with
this estimate. In addition, a mere adjustment for the degrees of freedom is not sufficient
because the correlation and heteroscedasticity in the residuals may distort the OLS results
in a more complicated fashion that cannot be adjusted for by a proportional degrees-of-
freedom adjustment of the standard errors obtained in DF-analysis.

The complications in the application of DF-analysis with double-entry data, however,
do not imply that we cannot determine the correct distribution of the estimated coefficient
(3 and of the estimated heritability A% and shared environmental influence ¢?. In order to
establish this distribution, however, it is necessary to adopt a more general framework than

that of standard linear regression.

3 A Generalized Method of Moment Approach to DF-

Estimation

3.1 Specification of a GMM Estimator

The important characteristic of double-entry twin data is that one can no longer treat each
individual as an independent observation since the realizations of the trait w;; within a twin
pair are drawn from a bivariate distribution with mean (w,w)" and the covariance matrix
in (2). However, it is still appropriate to consider the observations (wy;,ws;)" across twin
pairs as independent realizations.

Generalized method of moments (GMM) estimation is based on the idea that the param-
eters of an empirical model can be identified and estimated by comparing the theoretical

moments of a statistical model with their empirical counterparts in the sample (Hansen



1982; Newey and McFadden 1994). One advantage of this approach, as compared to max-
imum likelihood estimation, is that the inferences are based only on the moments of a
statistical model, without the requirement to define the respective distributions exactly.
For instance, standard OLS regression emerges within the GMM framework from the mo-
ment condition that the residuals of the regression are orthogonal (i.e., uncorrelated) with
the right-hand-side variables in the regression. While in this regression example the number
of moment conditions equals the number of parameters to be estimated (i.e., each right-
hand-side variable in the a regression model yields one moment condition to identify the
respective parameter), GMM estimation easily accommodates overidentified models where
the number of moment conditions exceeds the number of parameters. This feature of GMM
estimation makes it particularly useful for the analysis of twin data, which are characterized

by the fact that in each twin pair we obtain two observations of a trait.

3.2 Asymptotic Variance in Double-Entry DF-Analysis

In the following we continue to use the notation introduced in Section 2 above. The only
modification to our notation is that from now on we allow for additional covariates to be in-
cluded among the right-hand-side variables x;;. Useful covariates are, for instance, observed
differences in the non-shared environment of twins that can contribute to the explanations
of within-twin pair differences of a trait (Rodgers, Rowe, and Li 1994). Moreover, the co-
twin’s trait value can be eliminated from the vectors x;; in order to estimate DF-models
that contain only additive-genetic and non-shared environmental effects (AE models) in-
stead of the standard ACE models that include additive genetic, shared and non-shared
environmental effects.

We denote the number of right-hand-side variables contained in z;; as K. The vector
xi; thus has K 41 columns, z; is a 2 X (K + 1) matrix containing the RHS variables of each
twin pair, and 3 is a vector with K + 1 elements (each vector/matrix includes a constant
term in addition to the K right-hand-side variables).

One possibility to define relevant moment conditions for the method-of-moment estima-
tion of 3 is to require that within each twin pair E[z},e15] = 0 and E[2;e2;] = 0. However,
these conditions yield a total of 2 x (K + 1) moment restrictions that need to be satisfied

by estimating K + 1 parameters. Due to randomness in the data, it is usually impossible



to find an estimate B to solve this overidentified problem.

The symmetry of double-entry data suggests that we choose the moment restriction
E[e;] = 0, (6)

which implies that the sum €15 + ;€25 has zero expectation. The empirical counterpart

to this moment condition is
1 -
-~ Zasjsj Zaz —z;8) ==X'"(Y —X3) =0, (7)
j=1

which yields K41 equations for the unknown K 41 parameters contained in 8. The solution
to (7) is Bpp = (X’X)"1X'Y, which is identical to the OLS coefficient obtained from
regressing Y on X. The consistency of this estimator follows directly from the properties of
OLS regression, and the asymptotic variance of this estimator is immediately obtained from
the large-sample properties of GMM estimators (e.g., Hansen 1982; Newey and McFadden
1994).

Result 1 (asymptotic variance of DF-estimator) The estimator Bpp = (X'X)"1X'Y

with double-entry twin data is asymptotically distributed as
. a 1 _ _
Bor == N(B, —{Elzja; ]}~ S{ERjz]} ), (8)

where ¥ = Elajejeix;| is the covariance matriz of the moment restrictions. A consistent
estimator for the asymptotic variance of Bpp n (8) is given by (X'X) 1S(X'X) "1 with
S = i vigigsus] = [2j (w81 + ah,805) (€115 + Ey;w0;)], where & = yij — Jij =

Yij — xijﬁ is the residual of the DF-regression.*

The above estimator for the variance has the advantage that it is easily computed, and
we will show in Section 4 that it performs well when compared to the standard errors derived
from bootstrapping the double-entry twin data. Moreover, since the matrices x; can contain
covariates in addition to the co-twin’s trait and the degree of genetic relatedness, Result

1 also applies to the various extensions of the DF-model that are based on adding more

4The small sample properties of the variance estimator (X’'X)~*8(X’X)™* in Result 1 may be improved
by multiplying it with n/(n — K — 1), where n is the number of twin pairs in the data and K is the number

of right-hand-side variables in the DF-regression. See MacKinnon and White (1985).
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variables to the right-hand-side of the regression (see for instance Rodgers, Rowe, and Li
(1994) for a discussion of such extensions).

The asymptotic distribution in (8) also reveals why a mere degrees-of-freedom adjust-
ment after DF-analyses with double-entry data may be misleading. The covariance matrix
that is reported with standard regression software after a DF-analysis is 62(X’X)~!, where

52 is the residual variance of the regression. A degrees-of-freedom adjustment of this co-

e
variance matrix approximately increases all elements of this matrix by a factor 2. Such a

proportional adjustment of the covariance matrix can only yield correct standard errors for

/

BDF if the variance of the moment restrictions ¥ = E[mgsjsj

x;] can be factored into a con-
stant term and (X’X). Since the DF-regression is heteroscedastic, this is not possible and
any proportional ‘degrees of freedom adjustment’ after DF-regressions with double-entry
data may lead to inappropriate standard errors. Our simulations below reveal that the
correct estimation based on Result 1 can deviate quite substantially from that of a ‘degrees
of freedom adjustment’.

While we established the asymptotic distribution of B using a GMM framework, alter-
native derivations are also possible. In particular, the variance estimator in Result 1 can
also be interpreted as a modification of the heteroscedasticity-consistent or ‘robust’ covari-
ance estimators that are commonly used when OLS is applied to data with unknown het-
eroscedasticity (Newey and West 1987; White 1980). This interpretation is useful because
the variance estimator in Result 1 not only provides means to account for the particular-
ities of double-entry twin data, but it also accommodates more general forms of unknown
heteroscedasticity. This feature is a welcome side-effect of Result 1 when DF-analyses are
applied to traits whose distribution is less ‘well-behaved’ as the additive genetic model sug-
gests. In Section 5 we investigate body mass index as one example of a heteroscedastic trait.
Alternative examples are binary or censored observation where the distribution of the trait

usually suggests the application of alternative methods (Kohler and Rodgers 1999).

3.3 Efficient Estimation with Double-Entry Data

In Section 2 we have pointed out the heteroscedasticity of DF-regressions that is due to the
fact that a co-twin’s trait is a better predictor of the proband’s trait in MZ twin pairs as

compared to DZ twin pairs whenever h? > 0. The same heteroscedasticity persists in the
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/

GMM framework above, where the variance of the moment restriction E[mgs €5

;] is different
between MZ and DZ twins.> This heteroscedasticity does not affect the consistency of Bpp,
and in Result 1 we provide an estimator for the covariance matrix of O that accounts
for this heteroscedasticity. Nevertheless, an analogy with regression analysis suggests that
we may be able to improve the efficiency of DF-analysis with alternative estimator, quite
similar to the well-known fact that a weighted regression—with weights equal the inverse of
the residual variance—is more efficient in the presence of heteroscedasticity than standard
OLS.

In order to derive an ‘efficient DF-analysis’, we denote as ¥(z;) = E[2e;e};|2;] the
covariance matrix of the moment restrictions (6) conditional on the zygosity of a twin pair.
Because these covariance matrices ¥(z;) are not of full rank in the subset of MZ or DZ
twins, we denote in this Section as ¥(z;)~ the Moore-Penrose inverse, or pseudo-inverse, of
E(zj).

Following the ‘general efficiency framework’ in Newey and McFadden (1994), a more

efficient estimator can be derived by specifying the moment condition
E[E(2)z;|25)%(2) " 2)ei] = 0. 9)

This moment condition is a weighted version of our earlier condition in equation (6), and
the weights depend on the zygosity-specific covariance matrix 3(z;) of this earlier moment
condition. Since the estimation of 3 based on (9) involves the unknown covariance matrices
¥(z;), this efficient estimator needs to be implemented via a two-step procedure. In the first
step a consistent—but inefficient—estimator for (3 is used, such as for instance the standard
double-entry DF-regression analyzed in the previous Section. The residuals of this initial
estimation can then be used to estimate 3(z;). The second step then reestimates 3 based
on the weighted moment condition (9) using the estimate of 3(z;) obtained in the first step.
The asymptotic equivalence of such a two-step approach to the actual knowledge of ¥(z;)
is one central insight of GMM and related methods (e.g., see Newey and McFadden 1994

for a formal discussion).

°In the case of standard DF analysis without additional covariates it is possible to solve for Elz}e;e)x;]
explicitely in terms of o2, p(z;), and other higher-order moments of the joint distribution of (w1;,ws;)’.

However, this solution is cumbersome and not particularly informative, and it is therefore not reported here.
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The empirical counterpart of the moment restriction in (9) is given by

1 A &
5[Xﬂr[ZXhIZShIZXﬂ'IZ (Yi\,[z - XMZB) + X]/)ZXDZSDZX]/)Z(YDZ - XDZB)] = 07

! 5 Al
x;€;€;

where Sy, and S}, are the Moore-Penrose inverses of Spz = [ .1 pz twin pairs £

éjé .Tj} and

A _ / A~ . Al . ~ . . . .
SMZ = [Da1 MZ twin pairs L6567, €; are the residuals obtained from a consistent first-step

estimation of 3, and the subscript ‘MZ’ or ‘DZ’ on Y and X denotes the fact that these

matrices contain only the monozygotic or dizygotic twin pairs in the sample. The estimator

for 3 that solves this empirical moment condition is

Bavn = H Xz XazSvzXazYaz + XbzXp2507XbzYnz), where  (10)
H = (XyzXuzSuzXuzXuz + X02Xp250,X02Xp7)- (11)

The asymptotic distribution of BGMM follows directly from the standard GMM theory:

Result 2 (efficient DF estimation) The estimator (3, defined in (10) is asymptoti-
cally distributed as Bgyy — N(3, H™Y), where H is defined in (11) above. This estimator
is efficient in the class of minimum distance estimators (which includes all weighted regres-

sion analyses).

The GMM estimator BGMM is more efficient than the standard DF-estimator 3 in the
sense that the difference in the covariance matrices of these two estimators, asy.var(3pp ) —asy.var(Bgyg )
is positive semi-definite. In large samples BGMM is therefore equivalent or preferable to the
standard DF-regression. The efficient estimation in Result 2 is closely related to similar ef-
ficient GMM estimators proposed by Im (1998) and Cragg (1983) for heteroscedastic data.
However, our approach additionally accounts for the twin-structure in which only observa-
tions on twin pairs, and not on individuals, can be treated as independent observations.

It turns out, however, that BGMM and BDF have the same asymptotic distribution in
the ‘augmented DF-model’. This frequently used version of the DF-regression is without
additional covariates, and the right-hand-side variables only consist of a constant, the co-
twin’s value to the trait, the degree of genetic relatedness and its interaction between the
co-twin’s trait value (see Section 2). The asymptotic distribution of the coefficients BDF is
given in Result 1, and its asymptotic variance is not improved by using the GMM estimator

in Result 2.
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This finding can be seen by choosing a reparameterization of the DF-model that is
statistically equivalent to the augmented DF-model. Denote as 1yz(2;) the indicator vari-
able that equals one if a twin pair is monozygotic and let 1pyz(2;) be the corresponding
indicator for dizygotic twins. The augmented DF-model is statistically equivalent to re-
gressing (in double-entry data) the first twin’s trait wi; on Z1; = (Imz(25), Imz(zj)ws;,
1pz(24), 1pz(2j)wsz;). The parameters in this modified model therefore estimate the mean
and the within twin-pair correlation of the trait w;; separately for MZ and DZ. The pa-
rameters therefore no longer have the interpretation of ¢? and h? as in the DF-model, but
statistically this second model is equivalent to the augmented DF-model. In this modified
regression it is clear that there is no efficiency gain in estimating the model with data that
combines both MZ and DZ twin pairs—the first two parameter could equally well be esti-
mated using only the MZ twin pairs, and the latter using only the DZ twin pairs. However,
the problem of heteroscedasticity is absent within the subset of only MZ or DZ twins. Since
the GMM estimator in Result 2 is equivalent to OLS in the absence of heteroscedasticity,
it is clear that the augmented DF-model is not improved by adopting the GMM estimator
BGMM-

In applications of DF-analysis where additional covariates are included among the ex-
planatory variables—such as observed environmental differences between the twins or sex in
tests for gender differences—the two estimators BGMM and [y will usually not be equiva-
lent and the efficiency of the estimates can be improved by using our GMM based ‘efficient
DF-estimator’. Our simulations in the next Section will reveal the extent to which such
efficiency gains are to be expected with data. However, since the computation of BGMM is
not much more complicated that than that of BDF, the former is also easily implemented

and directly compared with the latter.

4 Simulation

In this Section we apply the augmented DF-model to simulated data and compare the
standard errors given in Result 1 with a degrees of freedom adjustment and a bootstrap
estimate of these standard errors. We choose three different levels of ¢? and h? in these

simulated data in order to assess the importance of a correct variance estimation in a context
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Table 1: Summary statistics for the estimated ¢? and h? in simulations

Estimated value of | Estimated std. errors of
c? h? c? h?

Simulation 1: | E[c?] = .15 E[h?] = .15

mean 0.1385 0.1584 0.1260 0.1672

1st quartile 0.0503 0.0337 0.1223 0.1613

median 0.1459 0.1423 0.1257 0.1663

3rd quartile 0.2316 0.2784 0.1297 0.1730
Simulation 2: | E[c?] = .15 E[R? = .35

mean 0.1388 0.3579 0.1155 0.1469

1st quartile 0.0560 0.2509 0.1114 0.1412

median 0.1451 0.3396 0.1153 0.1469

3rd quartile 0.2206 0.4609 0.1191 0.1522
Simulation 3: | E[c’] = .25 E[R?] =5

mean 0.2392 0.5084 0.0919 0.1063

1st quartile 0.1745 0.4294 0.0873 0.1014

median 0.2474 0.4918 0.0918 0.1063

3rd quartile 0.3063 0.5835 0.0965 0.1106

with (a) relatively low heritability and shared environmental influences, and (b) a modest
and high importance of genetic and shared environmental influences on a trait.

The simulated data consist of 300 DZ and 200 MZ twin pairs. We first generate two i.i.d.
N(0,1) distributed random variables for each twin pair and then calculate the realizations
of the trait wi; and wy; as a linear combination of these random variables. We choose this
linear combination so that the trait w;; has an expected value of zero, a variance of one, and
a correlation within twin pairs of p(z;) = ¢ + h? R(z;), where R(z;) equals one for MZ and
0.5 for DZ twins. We create 100 realizations of this data-set and then apply the augmented
DF-regression with different estimators of the standard errors to these data. We focus our
discussion on the two primary parameters of interest in these DF-regressions, namely the
heritability A% and the shared environment influence ¢2.

The expected values of ¢ and h? in the three different simulation specifications are (a)
E(c?) = .15, E(h?) = .15 (low influence of genetic and shared environmental factors), (b)
E(c?) = .15, E(h?) = .35 (moderately strong genetic influence on trait), and (c) E(c?) = .25,
E(h?) = .5 (relatively high influence of genetic and shared environmental factors). Table 1
reports summary statistics of the estimated values of ¢? and h? that were obtained from these

simulated data. On average, the estimates of ¢? and h? are quite close to the underlying
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expected values, but at the same time there are substantial fluctuations in these estimates
caused by random variations in the simulated data sets. The above Table also summarizes
the standard errors associated with the estimates of ¢ and h? (the standard errors are
based on Result 1).

The comparison of these standard errors with alternative estimates based on bootstraps
of the simulated data® and on a degrees-of-freedom adjustment of the double entry results’
is given in Figure 1. The boxplots on the left-hand side of this Figure show the ratio of
the bootstrapped standard errors to the asymptotic standard errors obtained from Result
1. The graphs reveal a very high agreement of the asymptotic standard errors with the
respective bootstrap estimates. On average the two estimates agree almost completely,
and in most simulations the deviation is less than 5%. Such deviations are to be expected
since the bootstrap is in itself a random process that is subject to sampling variation.
These bootstrap estimates therefore support the argument that the ‘large-sample theory’,
which underlies the asymptotic results in Section 3, provides a good approximation for the
properties of the estimator already in samples with about 500 twin pairs.

More relevant are the boxplots on the right-hand side of Figure 1, which depict the
ratio of the degrees-of-freedom adjusted standard errors to the asymptotic standard errors.
In Simulation 1, where both genetic and shared environmental factors have only a small
influence on the trait, the two estimates differ only to a modest extent. The degrees-
of-freedom adjustment yields generally larger estimates for the standard errors, but the
overestimate is quite modest and usually less than 10%.

The extent to which the degrees-of-freedom adjustment overestimates the asymptotic
standard errors increases in Simulation 2, which is based on a modest heritability of Eh? =
.35 and a relatively small relevance of shared environmental factors of Ec? = .15. The
boxplot confirms our earlier arguments that a proportional increase of standard errors is
not optimal in DF-analyses since the regression is heteroscedastic. In Simulation 2, the
degrees-of-freedom adjustment overestimates the standard errors of h? substantially more

than those of ¢?: the overestimate for h? is mostly between 1018 percent, while that for ¢?

%The bootstrap estimates are based on 150 random drawings (with replacement) of twin pairs in each of

the simulated data sets.
"The variance-covariance matrix obtained after the regression with double-entry data was multiplied by

a factor of 2, or equivalently, the standard errors were increased by a factor of v/2.
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Figure 1: Comparison of standard errors on the basis of Result 1 with estimates based
on bootstraps and a degrees of freedom adjustment. The boxplots show the ratio of the
bootstrapped and degrees of freedom adjusted standard errors of ¢ and h? to the asymptotic
standard errors established in Result 1
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is mostly between 5-10 percent.

This pattern is even more pronounced in Simulation 3, which represents situations with
modest shared environmental influences and strong genetic influences on a trait (E c? = .25,
Eh? = .5). The degrees-of-freedom adjustment overestimates again the standard errors
associated with ¢? and h?, and the extent of this overestimate has further increased. More-
over, the divergence between the coefficients ¢? and h? has become stronger. The standard
error of h? tends to be overestimated by 32-40%, while those of ¢? are “only” overestimated
by 13-20%.

Although the estimates for ¢ and h? are of primary interest in a DF-analysis, it is
worth mentioning that the degrees-of-freedom adjustment also overestimates the standard
errors of the remaining coefficients 3, (constant term) and (3, (coefficient on R(z;)) in the
augmented DF-analysis. These overestimates can be quite substantial and range from an
average 65% in Simulation 1 to an average of 100% in Simulation 3. At the same time, the
asymptotic standard errors for 3, and (35 conform very well with the respective estimates
obtained from bootstrapping the data.

The comparison between the degrees-of-freedom adjustment and the asymptotically cor-
rect estimation of the standard errors can be interpreted in two directions. The first inter-
pretation emphasizes that the degrees-of-freedom adjustment tends to be conservative and
provides standard errors that exceed the correct values. A researcher therefore would not
erroneously interpret an estimated genetic or shared environmental influence as statistically
significant, and she would report p-values that tend to understate the true significance.

The alternative interpretation emphasizes that the overestimates by a degrees-of-freedom
adjustment can be of a magnitude that substantially reduces the power to detect significant
genetic or shared environmental factors. In many cases it may be that the exaggeration
of the standard errors renders an estimate of ¢ or h? statistically insignificant, and the
researcher may fail to infer relevant genetic or environmental influences. Adopting an
asymptotically correct estimate of the standard errors is therefore not only more satisfactory
from a statistical standpoint, but it is also facilitates the statistical identification of relevant
genetic and environmental influences. The simulation results suggest that the gains from
adopting the asymptotic estimates substantially outweigh the computational costs and the

reliance on large-sample theory in the derivation of the asymptotic distribution.
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In Table 2 we provide a comparison of the ‘efficient DF-analysis’ developed in Section 3.3
with the standard DF-analysis using the correct standard errors in Result 1. The analysis
is based on our earlier ‘Simulation 3’, augmented by an observed non-shared environmental
effect AE. We generate this effect via a twin specific N(0, 1) random variable with is added
to the trait w;; via a coefficient S5 = 0.2. The difference AE in the observed environment
is then calculated as the difference of these two random variables. We reduce the sample
size to 180 DZ and 120 MZ twins in this simulation because the coefficient h? in the case
of relatively high heritability is very accurately estimated already in smaller samples.

The top panel of Table 2 provides summary statistics of the estimated coefficients and
their standard errors when the augmented DF model is applied to these data. If the dif-
ference in the environment is accounted for, the estimated parameters—on average—agree
again with their expected values. If the environmental difference had not been accounted
for, the estimate ¢ would have been reduced by about 20% on average.

The bottom panel of Table 2 reports the respective coefficient and standard errors
obtained from the efficient DF-analysis based on GMM. It is quite apparent that the efficient
analysis has almost no effect on the estimated coefficients itself—mnot surprising given that
both analysis provide consistent estimates of the respective coefficients—and it is therefore
difficult to rank the two methods in terms of their estimated coefficients. As expected,
the GMM estimation leads to smaller standard errors of the coefficients due to a gain in
efficiency, but the reductions in the estimated standard errors of the coefficients ¢? and h?
are very modest.

In summary, the simulations in this Section suggest that the correct estimation of stan-
dard errors in DF-analysis is of considerable importance. Depending on the strength of
genetic and shared environmental influences on the trait value, the degrees-of-freedom ad-
justment can lead to overestimates of the standard errors exceeding 30% for the main
parameters of interest. Although these overestimates will generally not lead to an erro-
neous inference of genetic or shared environmental influences on a trait, the power of the
DF-analysis to detect heritable traits is substantially reduced by this overestimation of the
standard errors. The asymptotic standard errors established in Section 3.2 avoid this ‘loss of
statistical power’. Moreover, these asymptotic results compare very well with estimates of

the standard errors that are derived through bootstrapping of the data. The ‘large-sample
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Table 2: Comparison of efficient DF-estimation with standard DF-regression (Simulation
is based on the settings of ‘Simulation 3’ with an additionalal observed nonshared environ-

mental influences)

Estimated value of Estimated std. errors of
? h? Bak c? h? Bak

DF-analysis E[c)] =.15 E[RY] =.15 E[Bag] =2

mean 0.2589 0.4921 0.2012 0.1145 0.1328 0.0291

1st quartile 0.1873 0.3964 0.1785 0.1083 0.1251 0.0278

median 0.2573 0.5028 0.1981 0.1140 0.1326 0.0291

3rd quartile 0.3293 0.5722 0.2200 0.1209 0.1410 0.0303
efficient DF-analysis

mean 0.2577 0.4973 0.2043 0.1143 0.1323 0.0283

1st quartile 0.1891 0.3964 0.1806 0.1083 0.1245 0.0271

median 0.2563 0.5140 0.2023 0.1139 0.1308 0.0284

3rd quartile 0.3304 0.5802 0.2230 0.1207 0.1409 0.0296

theory’ used to establish these asymptotic standard errors therefore seems to be a good
approximation already in twin samples of a modest size.

The efficient DF-analysis of Section 3.3 provides an improvement of the usual regres-
sion approach when DF-analysis is combined with additional covariates. At the same time,
the gains from implementing this efficient analysis seem considerably less relevant than the
correct estimation of the standard errors in DF-regressions. Nevertheless, small improve-
ments in the standard errors of our estimates did occur after the implementation of efficient
GMM-based DF-analysis, and in some studies these small gains in efficiency may improve

the analysis.

5 An Application to Danish Twin Data

In order to support the conclusion obtained from simulated data, we also apply our modi-
fications of the DF-analysis to age-standardized body height and body mass index (BMI)
of female Danish twins. The data consist of 696 female twin pairs who were born during
1890-1920 and interviewed in 1966. These data have earlier been used by (Herskind et al.
1996) in order to assess the age- and sex-specific heritability of BMI. This earlier study also
contains a description of the Danish twin register and the survey in which the data were

collected.
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The respondents have an average body height of 160.3 cm, with a standard deviation of
6.04, and they have an average body mass index of 25.3 with a standard deviation of 4.5.
Since the distribution of BMI is skewed to the right, we follow Herskind et al. and apply the
DF-regression to the natural logarithm of BMI. Moreover, we also standardize height and
BMI by regressing the respective traits on a third-order polynomial in age and removing
any age-differences in the average value of the traits.®

Height and body mass index constitute ‘classic’ traits for behavioral genetic studies with
high heritability and low shared environmental influences. Their analysis with DF-analysis
is interesting because of the comparability to several other studies, and because the distribu-
tion of these traits in our data exhibit some subtle differences that affect the performance
of traditional DF-analyses with degrees-of-freedom adjusted standard errors. In particu-
lar, our simulations in Section 4 have suggested that the degrees-of-freedom adjustment
in double-entry DF-analysis is conservative, i.e., that it tends to overestimate the correct
standard errors. While this pattern holds when DF-analysis is applied to body height, it
is reversed when DF-analysis is applied to body mass index: the degrees-of-freedom ad-
justment in the BMI application underestimates the standard errors due to the presence
of additional heteroscedasticity. The asymptotic standard errors in Result 1, however, are
unaffected by this additional heteroscedasticity, and they continue to yield correct estimates
of the variability of the inferred parameters. The comparison of DF-analysis for height and
BMI therefore emphasizes the need to estimate standard errors that are correct in large
samples and also robust against deviations from the assumptions of the underlying genetic
model.

In Table 3 we first report the results obtained from the DF-analysis of body height.
Model 1 uses a degrees-of-freedom adjustment to establish the standard errors of the esti-
mates, while Model 2 calculates the asymptotically correct standard errors on the basis of
Result 1. Since the difference between these two methods is only in the calculation of the
covariance matrix, both models yield identical coefficients. The DF-estimates for heritabil-
ity agree with earlier studies of body height (e.g., Carmichael and McGue 1995; Plomin
1990), and our results reveal a relatively high heritability (h? = 0.64) with very modest

SThese age-standardized traits have a mean of 160.3 cm (height) and 3.26 (log of BMI), and a standard
deviation of 6.01 (height) and 0.164 (log of BMI).
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Table 3: Application of DF-analysis to the age-standardized body weight and fertility of
Danish twins born 195363

Method DF DF DF DF efficient DF
Std. Errors degrees of  asymptotic | degrees of asymptotic (Result 2)
freedom std. errors freedom std. errors
adjustment  (Result 1) | adjustment (Result 1)
Body height Model 1 Model 2 Model 3 Model 4 Model 5
c? 0.133 0.133 0.137 0.137 0.137
(0.092) (0.088) (0.092) (0.088) (0.087)
degree of genetic -103.7 -103.7 -102.9 -102.9 -103.3
relatedness (20.20)** (16.48)** (20.19)** (16.45)** (16.33)**
h? 0.644 0.644 0.640 0.640 0.642
(0.126)** (0.103)** (0.126)** (0.103)** (0.102)**
A ever smoked® — — 0.470 0.470 0.461
(0.419) (0.375) (0.340)
A number of — — 0.005 0.005 -0.0002
cigarettes® (0.035) (0.035) (0.030)
constant 139.3 139.3 138.6 138.6 138.7
(14.72)** (14.17)** (14.72)** (14.14)** (14.02)**
N (twin pairs) 696 696 696 696 696
R? 0.356 0.356 0.359 0.359 —
log of BMI Model 6 Model 7 Model 8 Model 9 Model 10
c? 0.021 0.021 0.036 0.036 0.016
(0.099) (0.109) (0.097) (0.108) (0.106)
degree of genetic -2.143 -2.143 -2.133 -2.133 -2.313
relatedness (0.427)** (0.459)** (0.422)** (0.444)** (0.418)**
h? 0.666 0.666 0.663 0.663 0.719
(0.133)** (0.143)** (0.131)** (0.138)** (0.130)**
A ever smoked® — — -0.0249 -0.0249 -0.0261
(0.0121)* (0.0098)* (0.0098)**
A number of — — -0.0018 -0.0018 -0.0017
cigarettes® (0.0010)"  (0.0009)* (0.0008)*
constant 3.149 3.149 3.101 3.101 3.164
(0.317)** (0.351)** (0.314)** (0.349)** (0.342)**
N (twin pairs) 696 696 696 696 696
R? 0.265 0.265 0.284 0.284 —

Notes: Standard errors in parentheses. p-values: + p < 0.10; * p < 0.05; ** p < 0.01. All
analyses are based on double-entry data. (a) Ever smoked more than 100 cigarettes, 50 cigars,
or 5 packs of tobacco. (b) Cigars and tobacco were converted into ‘cigarette-equivalents’ by
adjusting the respective distributions of cigar and tobacco consumption to the same mean
and variance as the distribution of cigarette consumption.
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and statistically insignificant shared environmental influences. Moreover, this heritability
increases to h? = 0.82 if the insignificant shared-environment effect is dropped from the
analysis and the estimate for heritability is obtained from an AE model only. Since we are
mainly interested in the methodological aspects of the analysis, however, we do not report
these AE estimates and continue our discussion of the ACE model shown in Table 3.

The difference between Model 1 and 2 occurs with respect to the precision that is asso-
ciated with these estimates. Most relevantly, the standard error of h? is about 20% lower
and that of ¢? is about 5% lower, if they are based on the correct calculation in Result 1
instead of the degrees-of-freedom adjustment. This pattern agrees with our earlier simu-
lation results in which the degrees-of-freedom adjustment usually provided a conservative
estimate of the standard errors.

One important environmental difference that can affect body height and BMI is smoking.
Models 3-5 therefore include the difference in the twins’ smoking behavior in order to test
whether the estimates of heritability for height are affected by potentially different smoking
behavior of the twins. The results in all models suggest, however, that body height is not
affected by smoking. Moreover, including smoking in the analysis leaves the estimates for
c? and h? almost unaffected.

As in our earlier analyses, the degrees-of-freedom adjustment overstates the variability
of the coeflicients. The extent of this overestimation differs quite considerable between the
coefficients, ranging from virtually zero to more than 25%. The efficient DF analysis in
Model 5 provides an additional small reduction of the standard errors in the DF-analysis,
and it results in small changes in the point estimates for the coefficients.

The bottom part of Table 3 reports the corresponding analyses for the logarithm of
body mass index. Model 6 and 7 present the results of the augmented DF-analysis with
degrees-of-freedom adjusted and asymptotic standard errors. The coefficients suggest that
the heritability of BMI is similar to that of body height. The estimated h? equals 0.67 and
there is a virtual absence of shared environmental influences (the estimate for heritability
increases to h? = 0.69 in an AE model). This pattern agrees with the earlier analysis
of the same data with structural equation models (Herskind et al. 1996), although this
study has found a somewhat higher heritability based on the estimation of an AE model

without shared environmental influences. Moreover, our results agree with analyses of body
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weight that have also found heritabilities of approximately 0.70 (Grilo and Progue-Geile
1991; Rodgers et al. 1994).

The striking aspect in the comparison of Models 1 and 2 is that the degrees-of-freedom
adjustment yields standard errors that are approximately 10% below the asymptotic stan-
dard errors. The latter, however, seem to be more appropriate because they correspond
closely with estimates of the standard errors obtained by bootstrapping the data.” The
asymptotic standard errors therefore not only provide a correct assessment of the variabil-
ity of the estimated coefficients, but they also reveal that the degrees-of-freedom adjustment
would have underestimated this variability. "

The reason for this pattern is due to the fact that the logarithm of BMI (and also BMI
itself) is heteroscedastic beyond heteroscedasticity that is due to the twin design. In Section
2 we have shown that the variance of the residual ¢;; in DF-analysis depends on zygosity (see
equation 5), but not on the value of the co-twin’s trait. We investigate this second condition
using a Cook-Weisberg test for heteroscedasticity. This test reveals whether the variance of
the residual depends on the value of co-twin’s trait. The null-hypotheses of homoscedastic
residuals with respect to the co-twin’s trait value is rejected in the BMI analysis (p-value
< 0.0001), while this null-hypotheses is not rejected in the analysis of body height (p-value
= .24). Although height and body mass index appear like very similar traits, the above
tests reveal that they differ in our data in an important aspect: the residual variance in
DF-regressions does not depend on the co-twin’s trait value in the analysis of height, but it
does in the analysis of BMI (taking the logarithm reduces this heteroscedasticity somewhat,
but does not eliminate it).

It is well-known that such heteroscedasticity biases the estimates for the standard er-
rors. The degrees-of-freedom adjustment, which proportionally inflates the standard errors
obtained after a DF-regression, is therefore based on an inappropriate starting point. In
this specific example this implies that the degrees-of-freedom adjustment is no longer con-
servative but actually underestimates the variability of the estimated coefficients.

The presence of this additional heteroscedasticity, however, does not affect the asymp-

9The bootstrap was based an 500 random samples from the data. The bootstrapped standard errors

exceed the asymptotic standard errors by 1-1.5% for all four coefficients.
10 Although we do not pursue this question further, the distortion of standard errors due to such additional

heteroscedasticity also exists in structural equation models and is not restricted to DF-analyses.



24

totic standard errors in Result 1. In particular, the derivation of this Result within the
framework of GMM estimation does not require that the residuals €;; are homoscedas-
tic. Some relatively weak regularity conditions are sufficient in order for Result 1 to yield
asymptotically correct standard errors. As indicated earlier, this robustness of the estimate
in Result 1 is a welcome side-effect of our method. The estimated standard errors remain
asymptotically correct even if the residual variance in DF-analysis is heteroscedastic and
depends on the co-twin’s trait value (recall that DF-analysis is always heteroscedastic with
respect to zygosity whenever h? > 0).

Models 8-10 in Table 3 additionally include differences in smoking behavior in the DF-
regressions. The inclusion of these non-shared environments does not substantially affect
the estimates. The heritability remains at h? = .66, and shared environmental influences
remain absent. Smoking itself, however, is clearly negatively associated with BMI.

Most relevant in the present context is the comparison of the standard errors in these
three models. The comparison reveals that the asymptotic standard errors tend to be larger
than those of the degrees-of-freedom adjustment for the coefficients ¢? and h?>—similar to
our earlier discussion of Models 6 and 7—while the pattern is reversed for the covariates
pertaining to smoking behavior.

The efficient estimation in Model 10 yields smaller standard errors than Model 9, and it
yields slightly different estimates for the coefficients. In particular, the shared environmental
influence is somewhat diminished and heritability is slightly increased. The coefficients of
the smoking variables remain almost unchanged. Although the efficient estimation yields
smaller standard errors, it is generally not possible to rank the point estimates of Model
9 and 10 in terms of their accuracy. The latter are more efficient, but both estimates are
consistent and thus ‘close’ to the true coefficients in large samples.

The application of our methods to the Danish data supports the findings of our simula-
tion study. The degrees-of-freedom adjustment of the standard errors after a DF-regression
with double entry data provides an overestimate of the correct standard errors when the
data conform with the theoretical model. When the data are heteroscedastic like BMI,
however, this may no longer be the case and the degrees-of-freedom adjustment can yield
standard errors that are too small. The calculation of the asymptotically correct standard

errors is therefore advisable, both because it increases the power of the statistical tests
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and because these standard errors are also ‘robust’ with respect to more general forms of
heteroscedasticity which are not directly related to the twin-design.

The efficient DF-analysis seems to provide coefficient estimates that are very close to
those of the standard DF-analysis and the ‘efficiency gains’ in terms of smaller standard
errors on these coefficients is relatively modest. At the same time, the computation of this
GMM estimator is relatively simple and even modest efficiency gains may contribute to the

statistical properties of an analysis.

6 Conclusions

DeFries and Fulker’s (1985) regression procedure for estimating heritability (h?) and com-
mon environmental influences (c?) has been frequently applied to twin data and other
selected and unselected samples with multiple kinship levels. The ambiguity in unselected
samples as to which twin should be used as the proband is frequently resolved by double-
entry: Each twin pair is entered twice, and each member of a twin pair provides once the
dependent and once the explanatory variable. While the consistency of the regression esti-
mates for heritability and shared environmental influences is not affected by this procedure,
the standard errors obtained after regressions with double-entry data need to be adjusted.
It has been common practice to adopt a degrees-of-freedom adjustment in which the stan-
dard errors are based on the number of twin pairs, instead of the number of observations
in the double-entry data. This procedure, however, is problematic due to the correlation
and heteroscedasticity of the residuals. The degrees-of-freedom adjusted standard errors
may therefore deviate, possibly substantially, from the correct distribution of the estimated
coeflicients.

In this paper we establish the correct asymptotic distribution of the coefficients of DF-
analyses with double entry data and we provide a simple formula to estimate the covariance
matrix of the coefficients in DF-regressions. Applications of this method to simulated data
sets show that the degrees-of-freedom adjustment overestimates the correct standard errors
of the coefficients. The extent of this overestimation exceeds 20% for traits with moderate
heritability, and it tends to become larger for traits with higher heritability. Moreover,

the overestimation of the standard errors is not uniform across coefficients and it can vary
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considerably between ¢? and h?.

Although the degrees-of-freedom adjustment seems to provide conservative estimates of
the standard errors, the extent of this overestimation substantially reduces the statistical
power of DF analyses to detect relevant genetic and shared-environment influences on a
trait. The estimation of the asymptotically correct standard errors proposed in this paper
avoids this loss of statistical power, and the empirical validity of these asymptotic standard
errors is confirmed by bootstrap estimates.

Our analyses also show that DF-regressions are inefficient when additional covariates,
such as observed differences in non-shared environments, are included in the analysis. We
provide an ‘efficient DF analysis’ that is preferable in such situations because it provides
more precise estimates in large samples. Our simulations show that such efficiency gains
are possible. At the same time, these gains are only of modest importance, especially when
compared to the effect of correctly estimating the asymptotic standard errors.

The applications of our methods to the body height and body mass index of female
Danish twins supports the conclusions of our simulation study: the estimated asymptotic
standard errors tend to be below those obtained from a degrees-of-freedom adjustment, and
the statistical power to detect genetic effects by DF analysis is substantially improved by
adopting the methods proposed in this paper. Moreover, our method is relatively robust
to additional sources of heteroscedasticity which are not due to the twin design. In the
presence of such heteroscedasticity, as for instance in the analysis of body mass index, the
degrees-of-freedom adjustment can yield standard errors that too low, while our modified

estimation continues to yield an appropriate assessment of the variability of the estimates.
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